Покрытие для солнечных коллекторов


Селективное покрытие своими руками для солнечного коллектора

Самодельный солнечный коллектор это едва-ли не самая интересная тема в контексте энергоэффективного дома. Для изготовления солнечного коллектора не требуется высокотехнологичного производства и если разобраться в теории и не бояться практики — можно обеспечить семью горячей водой, подогретой солнцем.

Изготовление коллектора проходит в несколько этапов, один из которых — выбор и нанесение селективного покрытия на поглощающие панели (абсорберы). Отмечу, что затраты на селективное покрытие незначительно увеличивают общую стоимость проекта, но играют важную роль.

Абсорберу (поглощающей панели) нужно покрытие, которое будет эффективным теплоприемником, прозрачно для инфракрасного излучения.

На какие характеристики селективных покрытий нужно ориентироваться?

Мерилом эффективности селективного покрытия является:

  • Коэффициент поглощения солнечной энергии(α)
  • Относительная излучающая способность (ε)
  • Отношение способности поглощения к излучению

Начнем с самого простого и доступного селективного покрытия: краски.

Селективная краска

Обычные черные краски не годятся, так как являются теплоизоляторами и не обладают термостойкостью. Матовая автокраска не обладает необходимой термостойкостью, хотя светопоглощение у них хорошее (в испытаниях дают 65-70°С при 70-80°С у коллектора с покрытием тонером по лаку).

Лаки, посыпанные тонером для лазерных принтеров, дают правильное покрытие с точки зрения матовой поверхности, но так же плохо проводят тепло. Смешивать лак и тех. углерод — идея еще хуже, так как получается очень толстый слой покрытия с глянцем. Нам нужно добиться толщины селективного покрытия в несколько микрон.

Подходят аэрозольные и баночные термостойкие матовые краски для мангалов, печей, каминов черного цвета. Под некоторые краски требуется нанесение специального антикоррозийного грунта, кислотного грунта.

Есть подходящие краски не в форме аэрозоля, но которые можно наносить краскопультом. Напоминаю, толщина слоя очень важна для эффективности селективного покрытия.

Нашел в продаже специализированные краски для солнечных коллекторов с заявленными 99% поглощения.

Готовая селективная пленка или металлическая лента

Селективными пленками пользуются мелкие производители коллекторов. Это термопленки для наклеивания на абсорбер или рулонная медь/алюминий с готовым селективным покрытием, нанесенным в условиях вакуума. Достать такой материал в розницу сложно.

Селективное покрытие на алюминий

Идеального тонкого покрытия графитового цвета на алюминии добиваются тем же методом, что и с оцинковкой — чернение купоросом/хлоридом натрия. Это спорный вариант самодельного селективного слоя, так как истончает металл.

Промышленные доступные абсорберы в основном алюминиевые, толщиной 0,2 мм, крашеные матовой термокраской. Учитывая это, мудрить с чернением алюминия всяким хлорным железом и анодированием не имеет смысла в масштабах самодельного солнечного коллектора. Наиболее быстро окупаемым в самоделках является именно крашеный алюминий, который уступает в теплоотдаче и только черненой меди. Но у алюминиевого абсорбера есть свои недостатки.

Селективное покрытие на медный абсорбер

Перед оксидированием медную поверхность нужно тщательно очистить кислотой (горячий уксус, лимонная кислота, сульфаминовая кислота). Шкурить перед чернением щетками по металлу или какими-либо абразивами не дает никаких преимуществ в абсорбции энергии в дальнейшем.

Очистить медь можно солью/содой по чайной ложке на 100 г. воды.

Прочную оксидную пленку можно получить температурой красного каления — 1200°С с последующим охлаждением. Делать такое оксидирование нужно до момента спайки. В домашних «каминных» условиях такое не провернуть, нужно нести медь к кузнецу.

Оксидирование меди серной мазью дает рыхлое неустойчивое селективное покрытие. Естественная окись меди имеет поглощающую способность в четыре раза большую, чем у термостойкой краски: 75% поглощения, 33% эмиссии, что дает 42% эффективности.

Чернение меди делают также  электролитическим способом, рецепты и технологический процесс есть в сети.

Жидкости для воронения (чернения) хорошо работают, но дорогие. Протравки можно делать самостоятельно, рецепты есть по этой ссылке. Хочу отдельно остановиться на паре способов. В способе с серной печенью — оксид меди в составе полученного покрытия может быть в меньшей концентрации, чем сульфид меди, а это может влиять на селективную способность покрытия, но я не химик и не уверен.

Промышленный метод оксидирования меди с помощью едкого натра опасен для здоровья, не применяйте его в гаражных условиях. Вместо NaOH+NaClO2 пользуются содой, которая в промышленных масштабах неудобна и дорога для чернения меди.

Хотя образцы, черненные NaOH показывают лучший результат (подробнее о тестах самодельных селективных покрытий на меди и алюминии здесь) чернение содой — процесс медленный, на глубокий черный цвет уходит около 2-х суток в растворе без подогрева. Концентрация раствора: 2 чайные ложки на 100 грамм воды.

Формирование оксида проходит медленно, поэтому нужный оттенок и равномерность получить гораздо проще таким методом. Раствор нужно периодически помешивать а детали переворачивать.

Солнечный свет ускоряет процесс оксидирования меди. Толщина покрытия в несколько микрон, что нам и нужно. Очень стабильное, не смывается и не сцарапывается.

Встречал советы с парами аммиака (нашатырного спирта), якобы приводят к быстрому потемнению меди в закрытой емкости. Однако это скорее патинирование, придающее меди синеву, нестойкое покрытие.

Прожиг меди газовой горелкой дает на 10-12°С меньше селективности, чем оксидирование химическими способами.

Для коллектора лучше выбрать медь. Простая пайка, долговечность работы даже при утрате селективного покрытия (с алюминием все в разы сложнее), хотя медь и получится раза в 4 дороже алюминия.

Термокраска на медь тоже наносится, но раз уж вы теперь знаете, как ее оксидировать, то браться за покраску точно не стоит.

Селективное покрытие на оцинковку

Химическое меднение (и последующее оксидирование) оцинковки можно провести в гаражных условиях с помощью пентагидрата сульфата меди (медного купороса).

Химическое чернение раствором медного купороса и натриевой соли соляной кислоты (хлорид натрия) получается не стойким. Чернить оцинковку лучше готовым промышленным чернителем, с которым можно работать без гальваники холодным способом, он создает на поверхности прочную оксидную хроматную пленку. Оксидный слой поглощает максимум излучения в пасмурный день.

Вариант нанесения на оцинковку порошковой краски для лазерных принтеров (технического углерода) не менее популярен. Пластины оцинковки прогреваются строительным феном и посыпаются тонером. Слой краски получается тонким, матовым, прочным — порошок приплавляется к металлу сам. Если пластина слишком горячая и порошок оплавился — обрабатывают мелкозернистой наждачной бумагой. В солнечную погоду такое селективное покрытие более чем эффективно.

Другие технологии селективных покрытий:

  • Гофрированная селективная поверхность
  • Углеродный войлок
  • Селективное бархатное (флок) покрытие, нанесенное плазмой

Несколько обобщающих моментов о селективных поглощающих покрытиях:

  1. Коллекторы для сезонного пользования прекрасно греют воду с любым самодельным селективным покрытием.
  2. Абсорбер с матовым черным покрытием и двумя стеклами поверх имеет примерно те же температуры, что и теплоприемник с селективной краской и одним стеклом.
  3. Чернение меди гораздо долговечнее красок, а стоимость оксидирования не дороже покрытия термостойкой краской. Красить медь не стоит.
  4. Быстрее всех окупается крашеный алюминиевый абсорбер.

Книги по солнечным коллекторам:

Дмитрий Тенешев «Сделай сам солнечный коллектор из полимеров» Н. В. Харченко «Индивидуальные солнечные установки»

Целый архив документации по технологии производства селективных покрытий скачивайте тут (ссылка на яндекс.диск)

ehome.ironws.com

Селективное покрытие для солнечных коллекторов своими руками

Селективное покрытие солнечных коллекторов своими руками — это реально. Сушествует много действенных способов, начиная от создания самодельной краски, заканчивая обработкой поверхностей.

Основная проблема с которой сталкиваются те, кто решил самостоятельно собрать солнечный коллектор – выбор абсорбера. От его качества и характеристик зависит эффективность работы и тепловая производительность панелей. Неправильный подбор уменьшит энергоэффективность гелиоколлектора в разы, особенно в холодное время года. В этой статье мы расскажем про селективные покрытия, их особенности. Вы получите реальные пошаговые рецепты и инструкции их изготовления.

Виды селективных покрытий

Существует три варианта абсорберов – краски, химически обработанный металл и готовые пленки. Они отличаются тремя показателями:

  • Поглощательная способность
  • Излучательная способность
  • Общая эффективность

Поглощательная способность определяется тем, какое количество солнечного излучения материал может преобразовать в тепловую энергию. Она играет большую роль, но не главную.

Излучательная способность характеризует количество тепла, которое отдает абсорбер в окружающую среду в виде излучения. Чем она выше, тем больше теплопотери и ниже эффективность работы солнечного коллектора.

Общая эффективность – отношение первых двух показателей. Это относительный коэффициент, он не характеризует реальную тепловую производительность, но показывает эффективность селективного покрытия.

Таблица эффективности селективных покрытий для солнечных коллекторов

Селективная краска для солнечных коллекторов

Многие считают, что поверхность коллектора достаточно покрыть черной краской – она максимально поглощает солнечное излучение и хорошо нагревается. Такая солнечная панель будет неэффективной потому что:

  1. Краска поглощает в основном видимую часть спектра, остальное излучение не используется;
  2. Она излучает тепло в инфракрасном спектре в атмосферу;
  3. Большинство красок выцветают под воздействием солнечного ультрафиолета и теряют способность поглощать излучение;
  4. При высоких температурах краска рассыхается, снижая эффективность абсорбера в разы(!);
  5. Покрытие обычной краской действует как теплоизоляция, не пропуская тепло внутрь панели.

Поэтому для самостоятельного изготовления солнечного коллектора нужно использовать селективные краски, специально для этого предназначенные. Их стоимость зависит от:

  • Коэффициента эффективности;
  • Термостойкости;
  • Срока службы;
  • Раскрученности бренда.
Читайте также:  Отзывы о солнечных вакуумных коллекторах реальных людейСелективная краска для используется как для плоских, так и для воздушных солнечных коллекторов.

Самостоятельное нанесение селективной краски

Идеальной подложкой для краски является алюминий или медь. Металл является отличным проводником тепла и эффективно отдирает его у абсорбера и отдает внутренней части панели гелиоколлектора.

Перед окрашиванием медные или алюминиевые листы обязательно надо отполировать механическим способом и пастой ГОИ. Чем меньше шероховатости на поверхности металла, тем ниже его излучательная способность – дополнительные неровности увеличивают площадь, через которую уходит тепло.

Самый простой способ нанесения краски – окрашивание краскопультом. Толщина слоя может быть неравномерной, не соответствовать стандартам. Если слой толще указанного производителем – снизится общий коэффициент поглощения, если тоньше – повысится коэффициент теплоотдачи.

Идеальный вариант – заказать окраску листов металла на производстве, где есть оборудование для окрашивания металла путем напыления, гальванической окраской или электромагнитным способом.

Селективные пленки

Альтернатива окрашиванию – использование селективной пленки. Она бывает двух видов – однослойной и многослойной на металлизированной подложке.

Коэффициент эффективности пленки высок и сравним с селективными красками, хотя стоимость в перерасчете на квадратные метры гораздо выше. Качественные селективные пленки имеют излучательную способность 5% и менее.

Однослойная самоклеящаяся пленка наносится на лист металла (меди, цинка, никеля, алюминия). Металлический абсорбер должен быть предварительно подготовлен так же, как для нанесения краски.

Многослойная пленка крепится с натяжением на рабочую поверхность солнечной панели. Отдельные полосы спаиваются между собой с внутренне стороны. При выборе высокоселективной пленки надо учитывать температуру пайки, а при монтаже придерживаться ее. В противном случае образуются мостики холода и панель гелиоколлектора будет терять тепло.

Многослойная пленка не требует подложки или металлического абсорбера для гелиоколлектора.

Селективное покрытие меди

Оксидная пленка на меди изначально черного цвета, имеет хороший коэффициент поглощения солнечного излучения (см. таблицу). Чтобы оксид не распадался и не позеленел, его защищают покрытием с хорошим соотношением поглощения и излучения.

Перед началом любых работ с медью, листы абсорбера необходимо очистить. Разводим соль или соду из расчета 1 чайную ложку на 1 литр воды и промываем лист губкой. После всего смываем остатки раствора, желательно дистиллированной водой.

Химическую обработку меди нужно производить максимально равномерно, чтобы толщина окисла была одинаковой по площади абсорбера.

Температура раствора должна быть 60-65 градусов. Все работы проводить в средствах защиты – перчатках, очках и газопылевом (как минимум) респираторе. При попадании реагенты разъедают кожные покровы и слизистые.

Окисление меди персульфатом калия

Смешать до полного растворения:

  1. Сода каустическая, химически чистая (едкий натр NaOH) – 50-60 грамм;
  2. Калия персульфат (K2S2O8) – 14-16 грамм;
  3. Вода – 1 л.
Читайте также:  Расчет солнечного коллектора для отопления дома

Чернение медного покрытия аммонием

Смешать до полного растворения:

  1. Сода Каустическая, химически чистая (едкий натр NaOH) – 50-60 грамм;
  2. Аммоний надсернистокислый ((Nh5)2S2O8) – 14-16 грамм;
  3. Вода – 1 л.

Образование оксидной пленки хлоритом натрия

Смешать до полного растворения:

  1. Сода каустическая, химически чистая (едкий натр NaOH) – 100 грамм;
  2. Хлорит натрия (NaClO2) – 50-60 грамм;
  3. Вода – 1 л.

Кухонный способ оксидирования

Добавить в готовый щелочной раствор для очистки канализационных труб (продается в любом супермаркете или магазине сантехники) медицинскую перекись водорода. От концентрации зависит скорость образования оксидной пленки, подбирать надо в зависимости от типа раствора для очистки труб.

Наносить раствор губкой или тряпкой на медный лист, после того как выделение кислорода закончится – наносить заново. Повторять до образования черной оксидной пленки.

Каление металла

Качественное и прочное селективное покрытие своими руками можно сделать путем нагревания медного листа до 1200 градусов и быстрого охлаждения в воде. Увы, для этого нужно соответствующее оборудование – неравномерный прогрев не даст однородной пленки одинаковой толщины.

Каление имеет преимущества по сравнению с химической обработкой – пленка образуется равномерная и устойчивая к повреждениям.

Другие способы

  • Жидкости для чернения (воронения) меди;
  • Обработка газовой горелкой (коэффициент поглощения ниже на 10-12% чем при химической обработке);
  • Протравки самостоятельного приготовления.
Если медь не будет обработана должным образом, вскоре после чернения, травки, воронения или доругих работ по образованию оксидной пленки она приобретет такую фактуру.

Цинковое покрытие для солнечных коллекторов

Цинк – хороший материал в качестве селективной поверхности для солнечных коллекторов. Есть три способа его обработки чтобы достичь максимальной эффективности абсорбера.

Обмеднение и оксидирование

Листы цинка необходимо промыть раствором 20 гр. фосфата натрия и 20 гр. мыла в 1 литре воды. Раствор предварительно подогреть до температуры кипения. После обезжиривания работать с листом можно только в резиновых перчатках.

Для снятия окислов обработать раствором 5 гр. соляной или серной кислоты в 100 мл. воды. Температура раствора должна быть 18-24 градуса, время обработки – 1 минута. После протравки промыть лист водой и высушить.

Для обмеднения готовим раствор:

  • Медный купорос (CuSO4) – 10 грамм;
  • Серная кислота концентрированная (h3SO4) – 10 мл;
  • Вода – 1 литр.

Обработать лист раствором на 2-5 минут (смотреть по результату), после чего промыть его водой. После процедуры обмеднения поверхность можно обрабатывать как обычный медный лист.

Нанесение порошковой краски

В качестве селективной краски для солнечных коллекторов можно использовать тонер для ксерокса или принтера. Лист цинка или оцинковки необходимо прогреть строительным феном, после чего равномерно покрыть его порошком.

Тонер припаивается к цинку не теряя матовости, что обеспечивает хорошие поглощение солнечного света. Если порошок оплавляется и образуется глянцевая поверхность, ее обрабатывают мелкозернистой наждачной бумагой.

Тонер для принтера или ксерокса также используется для повышения качеств цинка как абсорбера.

Чернение оцинковки

Цинк можно чернить химическим способом для повышения поглощающей способности. Химические реактивы собственного приготовления малоэффективны – полученное селективное покрытие быстро разрушается. Аналогом служат готовые смеси и реагенты, доступные в свободной продаже.

Селективное покрытие алюминия

Алюминий привлекателен как абсорбер для солнечного коллектора, но создать качественную оксидную пленку на листе сложно. Причина – сильное уменьшение толщины металла при кустарной обработке.

При наличии доступа к промышленным мощностям можно использовать анодирование, чернение купоросом, хлоридом натрия, хлорным железом.

Защита абсорбера для солнечного коллектора

Покрытие солнечных коллекторов необходимо защитить от внешнего механического воздействия. С этой целью абсорбер закрывают стеклом, оргстеклом, металлическими и пластиковыми сетками.

Лучший вариант – стекло с высоким содержанием железа и других металлов. Оно относительно мягкое, не трескается при большой нагрузке и стойко к точечному воздействию.

Под влиянием осадков (снег, град) поверхность становится матовой. Это снижает производительность панелей, особенно в холодное время года. В целях профилактики стоит периодически проверять их, при необходимости шлифовать механически или с помощью пасты ГОИ.

В статье мы постарались максимально полно рассказать об видах селективных покрытий, которые можно выполнить своими руками. Если у вас есть замечания или вы хотите задать вопрос – пишите в комментариях. Не забудьте поделиться публикацией в соцсетях!

vteple.xyz

Селективное покрытие для солнечных коллекторов

Важнейшей частью любого коллектора – плоского, вакуумного, воздушного – является абсорбер. Именно абсорбер преобразует энергию солнечного излучения в энергию тепловую. В плоских водяных и в воздушных коллекторах абсорбер в общем случае представляет собой металлический лист, покрашенный в черный цвет селективной краской для солнечных коллекторов. Причем в воздушном коллекторе абсорбер может быть выполнен с ребрами для увеличения площади нагреваемой поверхности. В вакуумных коллекторах абсорберы представляют собой тонкие пластины в вакуумных трубках. В плоских водяных и в вакуумных коллекторах абсорберы передают накопленное тепло теплоносителю. В воздушных коллекторах просто нагревают до высокой температуры воздух, находящийся в коллекторе. Но в любом случае важнейшую роль в процессе нагрева играет покрытие абсорбера.

Черный цвет - черному цвету рознь

Некоторые умельцы наносят селективное покрытие для солнечных коллекторов своими руками, наивно полагая, что, покрасив металлический лист черной краской, они решат все проблемы. Но черная краска бывает разная. И как эффективно будет работать коллектор, в огромной степени зависит от того, какой именно краской покрыт абсорбер. Дело в том, что черные краски различных составов по-разному реагируют на солнечный свет. Какая-то часть солнечной энергии поглощается, а какая-то отдается в виде теплового излучения, а результирующая эффективность будет очень низкой. Так, например, эффективность абсорбера, покрытого обычной черной краской, составляет всего 11%, в то время, как при покрытии другими типами красок эффективность может превышать 90%. Кроме того, обычные черные краски не обладают термостойкостью и при длительном нагревании начинают слоиться, отставать от основы.

Как работают различные покрытия

Главных показателей, которые характеризуют ту или иную черную краску для покрытия абсорбера, всего два. Это, во-первых, способность поглощения солнечной энергии и, во-вторых, способность покрытия поверхности к излучению энергии в длинноволновом диапазоне. Чем выше первый показатель и ниже второй, тем эффективнее покрытие. Так, например, два слоя покрытия «Черный никель» поверх гальванопокрытия из никеля на мягкой стали (согласно технологии деталь была погружена на шесть часов в кипящую воду) показали способность поглощения, равную 0.94. При этом способность излучения составила всего 0.07. Или «Черный никель», содержащий окиси и сульфиды никеля и цинка, нанесенный на полированный никель, имеет способность поглощения, равную 0.910, при способности излучения 0.11.

Новые составы, новые методы получения высокоэффективных абсорберов

Над поиском составов термостойких красок, способных по максимуму поглощать солнечную энергию, работают многие ученые. В Германии в 1980 году доктор Вольфганг Цезиаль и инженер Густав Кроз получили патент на «Способ получения селективно поглощающих площадей поверхности для солнечных коллекторов и устройство для реализации этого способа». Их работа получила дальнейшее развитие и была подкреплена патентами, полученными в 1998 и в 2001 годах. Целью этих и других аналогичных разработок являются, во-первых, достижение высокой степени поглощения, а следовательно, и высокой степени конверсии падающего солнечного света в полезное тепло, а во-вторых, достижение минимальной излучательной способности, то есть низкое тепловое излучение.

Для изготовления высокоэффективных абсорберов с нанесенным покрытием разрабатываются специальные технологии получения селективных красок и методы их нанесения на поверхности абсорберов, которые, к тому же, могут изготавливаться из различных материалов. К концу девяностых годов прошлого века это были, в основном, гальванически нанесенные слои так называемых «черного хрома» или «черного никеля». При этом были получены достаточно обнадеживающие результаты для указанных покрытий, а именно качество поглощения до 96%, процент излучения около 10%. Это были очень хорошие показатели.

Разработанные в середине девяностых годов в Германии методы нанесения селективного покрытия использовали процесс вакуумного напыления на основу. Были проведены эксперименты с нанесением на медную основу титаново-оксинитридных, а также керамических покрытий. Позднее были проведены эксперименты с алюминиевыми листами. Эти покрытия при контрольных замерах показали значение поглощения солнечного излучения, превышающее 95%, а значение излучательной способности - в пределах от 3% до 5%. Но, несмотря на такие высокие показатели, которые были получены для «Черного никеля» и «Черного хрома», эти покрытия не нашли применения на европейском рынке, так как при производстве этих напылений происходило довольно заметное загрязнение окружающей среды от использования гальваники в производственном процессе. Та же участь постигла и разработанное в США селективное покрытие «Черный кристалл».

Селективные покрытия в домашних условиях

Прежде чем решиться на самостоятельное нанесение селективного покрытия на абсорбер, нужно тщательно изучить характеристики доступных покрытий и взвесить свои возможности. Если вас что-то не устраивает, лучше отказаться от этой идеи и купить уже готовые коллекторы. Способов нанесения покрытий достаточно много, но не все они могут подойти. Например, некоторые умельцы, не вдаваясь в детали, просто покрывают металлический лист обычной черной краской только потому, что эта краска, во-первых, черная, а во-вторых, дешевая. Но такая краска принесет мало пользы, так как она не термостойкая, а при высыхании становится еще неплохим теплоизолятором. Черная матовая автомобильная краска обладает достаточно неплохим светопоглощением, достигающим 70%. Недостатком этой краски является слабая термостойкость.

Лакокрасочной промышленностью выпускаются черные матовые краски, обладающие повышенной термостойкостью. Такими красками покрывают грили, мангалы, изготавливаемые различными фирмами. Эти краски могут быть как в банках, так и в аэрозольной упаковке. Предпочтительнее, конечно, краски в аэрозольной упаковке, так как в этом случае можно нанести селективное покрытие, не превышающее нескольких микрон по толщине. При покупке нужно особо обращать внимание на способ нанесения покрытия, так как применение некоторых видов красок требует предварительной обработки поверхности, на которую они будут наноситься. В некоторых случаях требуется антикоррозийная обработка поверхности, а в некоторых случаях и кислотная грунтовка.

Краска Iliolac

В настоящее время наибольшей популярностью для нанесения селективного покрытия пользуется краска «Iliolac» («Илиолак») производства греческой компании Stancolac. Производители утверждают, что эта краска обладает поглощающей способностью, равной 99%. Краска эта выпускается в баночной фасовке, поэтому для нанесения ее на поверхность абсорбера лучше пользоваться краскопультом, чтобы получить слой не толще пятидесяти микрон.

Селективная пленка в рулонах

И, наконец, для покрытия абсорбера можно использовать селективную пленку. Эта тонкая термостойкая пленка, выпускаемая в рулонах, наклеивается на предварительно обезжиренную и очищенную поверхность абсорбера. Пленка эта представляет собой медную или алюминиевую фольгу с готовым селективным покрытием, нанесенным на нее методом вакуумного напыления.

Особых сложностей в нанесении селективных покрытий нет, и если вы решились сделать солнечные коллекторы своими руками, то добротно выполненное устройство будет работать ничуть не хуже своего промышленного собрата.

solarb.ru

Мягкое селективное покрытие стекла: что это, зачем применяется в стеклопакетах?

Для любого коллектора, независимо от его типа, требуется абсорбер. Это материал, который позволяет увеличить функции защиты и энергоотдачи. В обратном случае, неправильно выбранный материал для покрытия будет снижать свойства коллектора. Ранее для селективного покрытия использовались разные материалы и варианты цветов, но сейчас для абсорбера практически всегда используется чёрная краска (цвет, который более всего способен поглощать энергию). Это первый шаг в улучшении работы коллекторов. Далее последовали компоненты, которые не только поглощают цвет, но и способны распределять его в нужном направлении благодаря своим характеристикам.

Селективное покрытие для солнечных коллекторов

Важнейшей частью любого коллектора – плоского, вакуумного, воздушного – является абсорбер. Именно абсорбер преобразует энергию солнечного излучения в энергию тепловую. В плоских водяных и в воздушных коллекторах абсорбер в общем случае представляет собой металлический лист, покрашенный в черный цвет селективной краской для солнечных коллекторов. Причем в воздушном коллекторе абсорбер может быть выполнен с ребрами для увеличения площади нагреваемой поверхности.

В вакуумных коллекторах абсорберы представляют собой тонкие пластины в вакуумных трубках. В плоских водяных и в вакуумных коллекторах абсорберы передают накопленное тепло теплоносителю. В воздушных коллекторах просто нагревают до высокой температуры воздух, находящийся в коллекторе. Но в любом случае важнейшую роль в процессе нагрева играет покрытие абсорбера.

Черный цвет — черному цвету рознь

Некоторые умельцы наносят селективное покрытие для солнечных коллекторов своими руками, наивно полагая, что, покрасив металлический лист черной краской, они решат все проблемы. Но черная краска бывает разная. И как эффективно будет работать коллектор, в огромной степени зависит от того, какой именно краской покрыт абсорбер.

Дело в том, что черные краски различных составов по-разному реагируют на солнечный свет. Какая-то часть солнечной энергии поглощается, а какая-то отдается в виде теплового излучения, а результирующая эффективность будет очень низкой. Так, например, эффективность абсорбера, покрытого обычной черной краской, составляет всего 11%, в то время, как при покрытии другими типами красок эффективность может превышать 90%. Кроме того, обычные черные краски не обладают термостойкостью и при длительном нагревании начинают слоиться, отставать от основы.

Как работают различные покрытия

При этом способность излучения составила всего 0. 07. Или «Черный никель», содержащий окиси и сульфиды никеля и цинка, нанесенный на полированный никель, имеет способность поглощения, равную 0. 910, при способности излучения 0. 11.

Новые составы, новые методы получения высокоэффективных абсорберов

Над поиском составов термостойких красок, способных по максимуму поглощать солнечную энергию, работают многие ученые.

Для изготовления высокоэффективных абсорберов с нанесенным покрытием разрабатываются специальные технологии получения селективных красок и методы их нанесения на поверхности абсорберов, которые, к тому же, могут изготавливаться из различных материалов.

Разработанные в середине девяностых годов в Германии методы нанесения селективного покрытия использовали процесс вакуумного напыления на основу. Были проведены эксперименты с нанесением на медную основу титаново-оксинитридных, а также керамических покрытий.

Позднее были проведены эксперименты с алюминиевыми листами. Эти покрытия при контрольных замерах показали значение поглощения солнечного излучения, превышающее 95%, а значение излучательной способности — в пределах от 3% до 5%. Но, несмотря на такие высокие показатели, которые были получены для «Черного никеля» и «Черного хрома», эти покрытия не нашли применения на европейском рынке, так как при производстве этих напылений происходило довольно заметное загрязнение окружающей среды от использования гальваники в производственном процессе.

Селективные покрытия в домашних условиях

Прежде чем решиться на самостоятельное нанесение селективного покрытия на абсорбер, нужно тщательно изучить характеристики доступных покрытий и взвесить свои возможности. Если вас что-то не устраивает, лучше отказаться от этой идеи и купить уже готовые коллекторы. Способов нанесения покрытий достаточно много, но не все они могут подойти.

Лакокрасочной промышленностью выпускаются черные матовые краски, обладающие повышенной термостойкостью. Такими красками покрывают грили, мангалы, изготавливаемые различными фирмами. Эти краски могут быть как в банках, так и в аэрозольной упаковке.

Предпочтительнее, конечно, краски в аэрозольной упаковке, так как в этом случае можно нанести селективное покрытие, не превышающее нескольких микрон по толщине. При покупке нужно особо обращать внимание на способ нанесения покрытия, так как применение некоторых видов красок требует предварительной обработки поверхности, на которую они будут наноситься. В некоторых случаях требуется антикоррозийная обработка поверхности, а в некоторых случаях и кислотная грунтовка.

Краска Iliolac

Селективная пленка в рулонах

Особых сложностей в нанесении селективных покрытий нет, и если вы решились сделать солнечные коллекторы своими руками, то добротно выполненное устройство будет работать ничуть не хуже своего промышленного собрата.

Источник: http://solarb.ru/selektivnoe-pokrytie-dlya-solnechnykh-kollektorov

Селективное покрытие на стеклопакет своими руками — инструкция!

В одной из предыдущих статей мы рассматривали солнечные коллекторы (или гелиосистемы, как их еще называют), поэтому особо распространяться по поводу принципа их работы не будем. Отметим лишь, что такие системы не «отдыхают» ни зимой, ни даже в пасмурную погоду – температура воды никогда не падает ниже 60ᵒС.

Работают коллекторы достаточно просто: антифриз, заполняющий трубки конструкции, является теплоносителем и нагревается от попадания инфракрасных лучей и ультрафиолета на специальную панель – улавливатель. Нагретый антифриз перемещается в специальные теплообменники-аккумуляторы, где передают тепло воде. Сама же вода в дальнейшем перекачивается в отопительную магистраль.

Казалось бы, ничего сложного в этом нет, но этот элемент любой гелиосистемы – селективное покрытие – до сих пор непонятен для многих из нас.

Что такое селективное покрытие

Селективное покрытие – это слоистая структура из 3 или более слоев диэлектриков (могут использоваться оксид висмута, оксид титана, нитрид алюминия и т.д.)

Интересно то, что подобное покрытие можно запросто купить (оно продается в жестяных банках) и нанести на любой материал за исключением алюминия. Сплошной слой площадью в 1 м² этого вещества стоит примерно 1800 рублей. И если добавить к этому стоимость аккумулятора, то становится очевидным, что гелиосистема – это не настолько дорогостоящее удовольствие, каковым его преподносят неосведомленным покупателям.

Избирательное покрытие: о чем следует знать

Есть такое понятие, как коэффициент селективности. Если вкратце, это соотношение поглощенной энергии к переданной обратно. В химикатах, которые продаются в готовом виде, этот коэффициент колеблется между 8 и 16,5.

Также существует антиконвекционное селективное покрытие, уменьшающее отдачу тепловой энергии в окружающую среду.

Все селективные составы (а их на данный момент существует более тридцати) наносятся одним из четырех существующих методов:

  • плазменным напылением;
  • химическим;
  • ионно-магнетронным;
  • электрохимическим.

Другие разновидности покрытия

Селективное покрытие на поверхности абсорбера позволяет минимизировать потери на излучение

Помимо готовых средств, в качестве избирательного покрытия можно также наносить:

  • оксид меди или любого другого металла;
  • обувной утеплитель, который отдаленно напоминает черную байку (не самый эффективный вариант);
  • черный хром;
  • полупроводниковое покрытие;
  • газовую сажу;
  • матовую краску черного цвета;
  • москитную сетку (как запасной вариант).

Selective-cover

Отдельно стоит упомянуть о самом популярном, пожалуй, селективном покрытии – а именно о Selective-Сover Silver Mirror. Это один из лучших реактивов, впитывающих солнечную энергию.

Обладает следующими характеристиками:

  • показателем селективности 16;
  • надежностью, удобством в применении;
  • рабочей температурой до 365ᵒС;

На основе реактива можно изготовить электролит, который наносится электрохимическим путем. Одного флакона (стоит примерно 3000 рублей) хватит на:

  • 6 м² при электрохимическом нанесении;
  • 2 м² при контактном.

Селективное покрытие своими руками

Покрытие вбирает в себя всю солнечную энергию и превращает ее в тепловую (последняя аккумулируется и транспортируется)

Не будем распространяться о высокоселективных веществах. Можно прибегнуть к самому простому способу – окрасить панель черной краской.

Но для более эффективной работы солнечного коллектора желательно покрыть поверхность оксидом меди CuO, обладающим существенными преимуществами:

  • оно черного цвета;
  • у него низкий показатель теплоизлучения (все зависит от толщины слоя, в пределах 10-20%);
  • высокий коэффициент селективности (75-90%).

Словом, это весьма эффективное избирательное средство, которое можно легко приготовить своими руками. Поэтому мы остановимся именно на нем.

В целом процедура образование CuO на абсорбере коллектора займет порядка трех дней.

Способы получения оксида меди

Для получения CuO необходимо окислить саму медь – из нее, собственно, и выполнен абсорбер. Никаких валиков и кисточек здесь быть не может.

Ниже рассмотрены основные способы приготовления (точнее, компоненты) раствора для окисления меди.

Способ первый

  1. Литр воды.
  2. 15 г персульфата калия (К₂S₂О₈).
  3. 50 г каустической соды (NaОН).Каустическая сода

Способ второй

Все практически так же, как в первом способе, вот только вместо К₂S₂О₈ необходимо использовать надсернокислотный аммоний ((NН₄)₂S₂О₈).

Способ третий

  1. Литр воды.
  2. 50 г хлорита натрия (NaСlО₂).
  3. 100 г каустической соды (NaОН).

Обязательные условия для всех способов окисления

  1. Все поверхности должны быть обезжиренными.
  2. Температура раствора должна быть в пределах 62-65ᵒС.
  3. В процессе реакции будет выделяться кислород, который быстро улетучится, поэтому раствор обязательно должен быть свежим.
  4. Желательно использовать дистиллированную воду.

Техника безопасности

  1. Вся органика быстро разъедается NaОН, поэтому не стоит брать раствор голыми руками. Напротив, нужно использовать защитные средства (резиновые перчатки, очки), ведь во время реакции едкий натрий бурно вскипает.
  2. NaСlО₂ не так опасен, но руками его тоже лучше не брать. Выделяет хлор.
  3. (NН₄)₂S₂О₈ во время реакции выделяет много аммиака, поэтому нельзя проводить процедуру в закрытом помещении. Желательно пользоваться респиратором.
  4. Казалось бы, на открытом воздухе респиратора не нужно, но добиться в таких условиях необходимой температуры невозможно даже жарким летом.
  5. Самым безопасным является К₂S₂О₈, но в то же время он и самый дорогой из реактивов.

Источник: https://svoimi-rykami.ru/stroitelstvo-doma/otoplenie/selektivnoe-pokrytie-svoimi-rukami.html

Селективное покрытие своими руками для солнечного коллектора

Самодельный солнечный коллектор это едва-ли не самая интересная тема в контексте энергоэффективного дома. Для изготовления солнечного коллектора не требуется высокотехнологичного производства и если разобраться в теории и не бояться практики — можно обеспечить семью горячей водой, подогретой солнцем.

Абсорберу (поглощающей панели) нужно покрытие, которое будет эффективным теплоприемником, прозрачно для инфракрасного излучения.

На какие характеристики селективных покрытий нужно ориентироваться?

Мерилом эффективности селективного покрытия является:

  • Коэффициент поглощения солнечной энергии(α)
  • Относительная излучающая способность (ε)
  • Отношение способности поглощения к излучению

Начнем с самого простого и доступного селективного покрытия: краски.

Селективная краска

Обычные черные краски не годятся, так как являются теплоизоляторами и не обладают термостойкостью. Матовая автокраска не обладает необходимой термостойкостью, хотя светопоглощение у них хорошее (в испытаниях дают 65-70°С при 70-80°С у коллектора с покрытием тонером по лаку).

Подходят аэрозольные и баночные термостойкие матовые краски для мангалов, печей, каминов черного цвета. Под некоторые краски требуется нанесение специального антикоррозийного грунта, кислотного грунта.

Есть подходящие краски не в форме аэрозоля, но которые можно наносить краскопультом. Напоминаю, толщина слоя очень важна для эффективности селективного покрытия.

Готовая селективная пленка или металлическая лента

Селективными пленками пользуются мелкие производители коллекторов. Это термопленки для наклеивания на абсорбер или рулонная медь/алюминий с готовым селективным покрытием, нанесенным в условиях вакуума. Достать такой материал в розницу сложно.

Селективное покрытие на алюминий

Идеального тонкого покрытия графитового цвета на алюминии добиваются тем же методом, что и с оцинковкой — чернение купоросом/хлоридом натрия. Это спорный вариант самодельного селективного слоя, так как истончает металл.

Промышленные доступные абсорберы в основном алюминиевые, толщиной 0,2 мм, крашеные матовой термокраской. Учитывая это, мудрить с чернением алюминия всяким хлорным железом и анодированием не имеет смысла в масштабах самодельного солнечного коллектора. Наиболее быстро окупаемым в самоделках является именно крашеный алюминий, который уступает в теплоотдаче и только черненой меди. Но у алюминиевого абсорбера есть свои недостатки.

Селективное покрытие на медный абсорбер

Перед оксидированием медную поверхность нужно тщательно очистить кислотой (горячий уксус, лимонная кислота, сульфаминовая кислота). Шкурить перед чернением щетками по металлу или какими-либо абразивами не дает никаких преимуществ в абсорбции энергии в дальнейшем.

Прочную оксидную пленку можно получить температурой красного каления — 1200°С с последующим охлаждением. Делать такое оксидирование нужно до момента спайки. В домашних «каминных» условиях такое не провернуть, нужно нести медь к кузнецу.

Чернение меди делают также  электролитическим способом, рецепты и технологический процесс есть в сети.

Промышленный метод оксидирования меди с помощью едкого натра опасен для здоровья, не применяйте его в гаражных условиях. Вместо NaOH+NaClO2 пользуются содой, которая в промышленных масштабах неудобна и дорога для чернения меди.

Формирование оксида проходит медленно, поэтому нужный оттенок и равномерность получить гораздо проще таким методом. Раствор нужно периодически помешивать а детали переворачивать.

Солнечный свет ускоряет процесс оксидирования меди. Толщина покрытия в несколько микрон, что нам и нужно. Очень стабильное, не смывается и не сцарапывается.

Встречал советы с парами аммиака (нашатырного спирта), якобы приводят к быстрому потемнению меди в закрытой емкости. Однако это скорее патинирование, придающее меди синеву, нестойкое покрытие.

Для коллектора лучше выбрать медь. Простая пайка, долговечность работы даже при утрате селективного покрытия (с алюминием все в разы сложнее), хотя медь и получится раза в 4 дороже алюминия.

Термокраска на медь тоже наносится, но раз уж вы теперь знаете, как ее оксидировать, то браться за покраску точно не стоит.

Селективное покрытие на оцинковку

Химическое меднение (и последующее оксидирование) оцинковки можно провести в гаражных условиях с помощью пентагидрата сульфата меди (медного купороса).

Вариант нанесения на оцинковку порошковой краски для лазерных принтеров (технического углерода) не менее популярен. Пластины оцинковки прогреваются строительным феном и посыпаются тонером. Слой краски получается тонким, матовым, прочным — порошок приплавляется к металлу сам. Если пластина слишком горячая и порошок оплавился — обрабатывают мелкозернистой наждачной бумагой. В солнечную погоду такое селективное покрытие более чем эффективно.

Другие технологии селективных покрытий:

  • Гофрированная селективная поверхность
  • Углеродный войлок
  • Селективное бархатное (флок) покрытие, нанесенное плазмой

Несколько обобщающих моментов о селективных поглощающих покрытиях:

  1. Коллекторы для сезонного пользования прекрасно греют воду с любым самодельным селективным покрытием.
  2. Абсорбер с матовым черным покрытием и двумя стеклами поверх имеет примерно те же температуры, что и теплоприемник с селективной краской и одним стеклом.
  3. Чернение меди гораздо долговечнее красок, а стоимость оксидирования не дороже покрытия термостойкой краской. Красить медь не стоит.
  4. Быстрее всех окупается крашеный алюминиевый абсорбер.

Источник: https://ehome.ironws.com/energiya/solnechnye-kollektory/selektivnoe-pokrytie-svoimi-rukami/

Селективное покрытие для солнечного коллектора

Слой такого типа в солнечных батареях является едва ли не самым важным элементом в системе. Смысл в том, чтобы поглощать как можно больше солнечного света, излучения.

Как правило, химикат для нанесения селективного покрытия купить можно плюс-минус за 1$ на один квадратный метр. в общем-то такую процедуру увеличения КПД солнечного коллектора можно проделать самому, своими руками. Но важно знать как. Если правильно подойти к делу, можно не только сэкономить средства, но и добиться большего толка от вашей системы нагрева теплоносителя.

Селективное покрытия для солнечного коллектора — как сделать своими руками?

Во-первых давайте разберёмся что такое коэффициент селективности. По сути это соотношение поглощённой энергии и отданной энергии солнца. Именно этот показатель важен при выборе готовой продукции для нанесения селективного покрытия. Что можно выбрать в качестве такого покрытия:

  • Готовый специальный химикат, который продаётся в соответствующих магазинах
  • Оксиды различных металлов
  • Специальный утеплительный тонкий материал
  • Можно просто покрасить принимающую поверхность чёрной краской(матовой) или накрыть чёрной плёнкой или просто использовать газовую сажу. Но толку от такого нанесения будет в разы меньше, чем от специального напыления
  • Также есть специальная селективная краска для солнечных коллекторов
  • Специальное селективное покрытие с антиконвекционным эффектом. Такое нанесение уменьшает конвективную теплоотдачу. Для того чтобы покрытие подобного типа работало на максимум, необходимо подготовить поверхность, отполировать её и выготовить таким образом, чтобы она хорошо отражала солнечные лучи.

Как бы там ни было, при выборе материала покрытия необходимо учитывать коэффициент селективности: от 8,5 до 16. Селективное покрытие для солнечных коллекторов обладает и другими параметрами, но этот один из самых важных.

Источник: http://www.solnpanels.com/selektivnoe-pokrytie-dlya-solnechnogo-kollektora/

Покрытия поглощающих панелей (абсорберов)

От эффективности поглощающего покрытия в значительной степени зависит эффективность работы гелиоколлектора. Логичным является то, что чем больше энергии сможет поглотить покрытие, тем лучше. Но раньше не обращали внимание на то, что значительная часть поглощенной энергии идет на нагрев воздуха внутри коллектора и, как следствие, увеличение тепловых потерь.

Следующим этапом было использование селективных покрытий (избирательных). Селективное покрытие прозрачно для инфракрасного излучения (пропускает и поглощает солнечное излучение), но является зеркалом для теплового, в результате тепловая энергия «запирается» внутри поглощающей панели.

Существует примерно 30 разнообразных поглощающих покрытий, обладающих селективностью (специальные краски и лаки, гальваническое покрытие «черный хром», высокоселективные многослойные покрытия и др.), которые наносятся на различные материалы (алюминий, медь, стекло).

Основными показателями эффективности поглощающих покрытий являются:

  • коэффициент поглощения (абсорбации – a, обычно от 0,8 до 0,98), характеризующий сколько энергии поглощается относительно падающего излучения;
  • коэффициент излучения (эмиссии – e, обычно от 0,95 до 0,02), показывающий сколько энергии излучается относительно поглощенной энергии;
  • коэффициент селективности (=a/e), для удобства сравнивания поглощающих покрытий, т.е. чем больше значение тем лучше.

В настоящее время почти все современные коллекторы выпускаются только с высокоселективными поглощающими покрытиями абсорберов, т.к. помимо своей высокой эффективности они обладают еще и высокой технологичностью и надежностью.

Источник: http://www.sintsolar.com.ua/info/theory-ru/coatings-absorbing-panels-ru.html

Характеристики селективных покрытий

Эффективность селективной поверхности измеряется коэффициентом поглощения (α) солнечной энергии, относительной излучающей способностью (ε) длинноволновой тепловой радиации и отношением поглощательной способности к излучательной (α/ε).

Каждое селективное покрытие предназначено для нанесения на определенный материал: селективные покрытия для меди, необязательно годятся для алюминия. Стоимость является важным фактором, поскольку применение селективных покрытий либо снижает затраты на другие элементы солнечного коллектора (например, устраняет необходимость в двойном остеклении коллектора), либо значительно улучшает характеристики коллектора (а это оправдывает затраты) путем повышения рабочей температуры, получаемой от солнечного коллектора, или путем увеличения общего количества поглощаемой энергии.

Не все селективные покрытия легко доступны. Иногда эти трудности связаны с высокими транспортными расходами до завода, где наносится покрытие, и обратно до потребителя. Ограничивает их применение и сложный процесс нанесения, требующий контроля качества. Обычными методами нанесения покрытий являются гальванические, химические и пароосадительные ванны. Микроскопические слои в полмикрона должны иметь равномерную толщину. В таблице приводятся некоторые характеристики селективных поверхностей.

Таблица 1. Свойства селективных покрытий Поверхность Поглощательная способность для солнечной энергии, α Излучательная способность для длинноволнового излучения поверхностей, типичных для плоских солнечных коллекторов, ε
«Черный никель»; содержит окиси и сульфиды Ni и Zn на полированном Ni 0,91…0,94 0,11
«Черный никель» на оцинкованном железе 0,89 0,16…0,18
«Черный никель» 2 слоя поверх гальванопокрытия из Ni на мягкой стали (α и ε после 6-часового погружения в кипящую воду) 0,94 0,07
CuO на Ni; медь в качестве электрода с последующим окислением 0,81 0,17
Co3O4 на серебре; методом осаждения и окисления 0,90 0,27
CuO на Al; методом набрызгивания разбавленного раствора Cu(NO3)2 на горячую алюминиевую пластину с последующей горячей сушкой 0,93 0,11
«Черная медь» на Cu; методом обработки Cu раствором NaOH и NaClO2 0,89 0,17
«Эбанол С» наCu; промышленная обработка чернением Cu, обеспечивающая покрытия в основном на CuO 0,90 0,16
CuO на анодированном Al; обработка Al горячим раствором Cu(NO3)2—KMnO4 0,85 0,11
Горячая сушка Al2O3—Mo—Al2O3Mo—Al2O3Mo—Al2O3; промежуточные слои на Mo (ε измеряется при 260°C) 0,91 0,085
Кристаллы PbS на Al 0,89 0,20

При выборе селективного покрытия ключевым фактором является долговечность. Среди разрушительных факторов следует отметить влагу, высокие температуры и солнечный свет.

При сравнении характеристик черных матовых красок и селективных покрытий выясняется следующее:

  • теплоприемник с черной матовой поверхностью и 2-мя прозрачными покрытиями имеет примерно те же характеристики, что и с селективным покрытием и одним стеклом;
  • при достаточно высоких температурах, необходимых для приведения в действие абсорбционного охлаждающего оборудования (80°C), может потребоваться второе покрытие.
  • при температурах солнечного коллектора ниже 65°C второе стекло поверх селективной поверхности существенно не влияет на рабочие характеристики коллектора;
  • при рабочих температурах ниже 40°C применение селективного покрытия может не приводить к повышению КПД.

В настоящее время затраты на селективные покрытия лишь иногда вызывают увеличение общей стоимости.

Источник: http://www.mensh.ru/articles/harakteristiki-selektivnyh-pokrytiy

Селективные пленки

В последнее время поверхности тепловоспринимающих панелей большинства солнечных коллекторов стали покрывать селективно-поглощающими пленками с целью улучшить поглощение солнечных лучей и снизить теплопотери в результате излучения.

Как известно, всякое физическое тело, имеющее собственную температуру, излучает тепло в окружающую среду, причем количество излучаемого тепла пропорционально коэффициенту излучения поверхности тела.

Однако, если отполировать поверхность медной или алюминиевой пластины, то при той же температуре теряется лишь 1/10 часть энергии, испускаемой черным теплом, и коэффициент излучения становится равным весьма малой величине — около 0,1.

Следовательно, если создать такую поверхность, которая обладала бы, подобно черному телу, коэффициентом поглощения 1 только в спектральной области солнечного излучения (0,3.3 мкм), а само излучало бы немного, подобно отполированной металлической пластине, имеющей малый коэффициент излучения в длинноволновой области спектра с максимумом излучения при длине волны 10 мкм, то мы получили бы идеальную тепловоспринимающую поверхность, которая обладала бы нужными селективно-поглощающими свойствами. Несколько десятков лет тому назад проф. Табор в Израиле впервые создал подобную селективно-поглощающую пленку.

Для получения таких свойств на металлическую полированную поверхность с низким коэффициентом излучения наносится тонкий слой оксида меди, черного хрома или оксидов других металлов, либо покрытие из полупроводников.

Следует отметить, что в структуре селективной пленки обязательно должна присутствовать металлическая полированная подложка, т.к. одной лишь пленкой желаемый тепловой эффект не может быть достигнут.

В настоящее время при изготовлении селективно-поглощающих пленок для медных пластин используют черный хром и оксид меди, для алюминиевых пластин — оксид алюминия. Многие из этих материалов имеют коэффициент излучения 0,1…0,15. Кроме того, в последнее время используются красители с селективно-поглощающими свойствами, позволяющие получить коэффициент излучения около 0,3.

Источник: http://www.mensh.ru/articles/selektivnye-plenki

Мягкое селективное покрытие стекла: что это и где его купить?

Современное строительство предъявляет к пластиковому окну самые высокие требования по теплозащите, энергосбережению, звукоизоляции, экологичности, прочности и долговечности. Кроме того, для потребителей крайне актуальной остается защита от взломов и проникновения непрошеных гостей.

Флоат-стекло – наиболее распространенный вид стекла, получаемый флоат-методом, при котором стекло на выходе из печи плавления выливается на поверхность расплавленного олова и затем поступает через зону охлаждения для дальнейшей обработки. Флоат-стекло характеризуется исключительной ровностью и отсутствием оптических дефектов.

Ламинированное стекло, или триплекс – стекло, состоящее из нескольких слоев стекол, ламинированных вместе специальной пленкой, отличающейся высокой прочностью. При разрушении стекла оно остается на пленке. За это качество триплекс называют «стеклом безопасности».

Солнцезащитное стекло – стекло, способное снижать пропускание световой и солнечной тепловой энергии. Такими стеклами являются, например, окрашенные по всей массе стекла следующих цветов: промежуточный между бронзовым и коричневым, серый и зеленый. А также некоторые стекла с покрытиями.

Узорчатое стекло – листовое стекло, одна поверхность которого имеет декоративную обработку. Узорчатое стекло изготавливается разных цветов, рисунков, различной толщины, может иметь разную светопропускаемость.

Селективное стекло – стекло, которое имеет покрытие, обладающее низкой излучательной способностью (низкоэмиссионные). Теплоизолирующая способность селективного стекла намного выше обычного. Солнечное коротковолновое тепловое излучение проникает через стекло хорошо, а стремящееся выйти наружу длинноволновое излучение эффективно отражается от поверхности. Селективное покрытие можно наносить одновременно с процессом изготовления стекла либо методом плазменного напыления в вакууме.

Мягкое» самоочищающееся стекло. В 2002 году английская фирма Pilkington представила первое в мире самоочищающееся стекло. Стекло Pilkington Activ произведено методом магнетронного напыления тонкого прозрачного покрытия оксида титана.

Наиболее распространенным при изготовлении окон является флоат-стекло. Стекло, изготовленное этим методом, характеризуется равномерной толщиной, прекрасным качеством поверхности, отсутствием оптических дефектов.

Стеклопакет состоит из двух или более стекол, которые разделены воздушным или газовым промежутком и герметично соединены по контуру при помощи специальной (дистанционной) рамки. Такой своеобразный стеклянно-воздушный «бутерброд» обеспечивает современным окнам отличные теплозащитные и звукоизоляционные свойства.

Стеклопакеты могут быть одно-, двух-, трехкамерными. Что это значит? Под камерой в данном случае понимается промежуток (воздушный или газовый) между стеклами. Таким образом, однокамерный стеклопакет состоит из двух стекол с воздушным пространством между ними, двухкамерный стеклопакет включает в себя три стекла.

Кроме того, стеклопакеты имеют разную ширину (24 мм, 32 мм, 36 мм, 42 мм). Энергосберегающие свойства стеклопакета зависят от количества стекол и их вида. Так, например, на внутренней стороне однокамерного стеклопакета с обычными стеклами конденсат образуется уже при -8°С, на двухкамерном – при -18°С, при условии обеспечения в помещении оптимального температурно-влажностного режима эксплуатации.

Так что выбор стеклопакета полностью зависит от требований, которые предъявляет к нему заказчик. Следует отметить, что выбор конструкции стеклопакета может быть ограничен особенностями профильной системы и техническими условиями конкретного оконного производства.

Придание стеклу специальных свойств обеспечивается с нанесением на его поверхность низкоэмиссионных оптических покрытий. Такие покрытия позволяют проникать в помещение коротковолновому солнечному излучению, но препятствуют выходу наружу длинноволнового теплового излучения от отопительных приборов.

Ко второму типу относятся стекла с покрытиями, наносимыми путем вакуумного напыления. Они позволяют уменьшить излучение в несколько десятков раз.

Кроме того, для понижения теплопотерь стеклопакет можно заполнить инертным газом. Для заполнения используются различные инертные газы или их смеси.

В замкнутом пространстве между стеклами может находиться осушенный воздух или инертный газ, например аргон или криптон. Поскольку газ имеет более высокую плотность, потери тепла, происходящие за счет конвекции и теплоотдачи внутри стеклопакета, снижаются. Таким образом, теплозащитные характеристики стеклопакета с инертным газом выше, чем у конструкции, заполненной воздухом.

Источник: http://library.stroit.ru/articles/steklopaket/index.html

oknoportal.com


Смотрите также