Мощность солнечных панелей


Расчет мощности солнечных батарей для дома: формулы и погрешности

Солнечные батареи целесообразно использовать тогда, когда производимый ими электрический ток перекрывает как минимум 50% потребности дома в электрической энергии. Идеально, если они полностью обеспечивают дом бесплатным электрическим током. Для того, чтобы они могли выполнять любую из этих целей, нужно рассчитать реальную мощность солнечной батареи и на основе этой цифры определить, сколько панелей надо установить на крыше дома, а также какой будет срок их окупаемости.

Формула расчета реальной мощности панели

Мощность солнечной панели напрямую зависит от солнечного освещения. Чем больше лучей падает на батарею, тем больше тока она производит. И наоборот.

Производители указывают номинальную мощность, исходя из того, что на 1 кв. метр светочувствительных элементов падает 1 000 Вт солнечной энергии. На такую цифру стоит ориентироваться только тогда, когда в месте расположения частного дома, наблюдается такая же солнечная активность.

Реальную мощность солнечной панели можно рассчитать по формуле: E = I x  x Ko x Kпот., где

  • Е является реальной мощностью батареи (измеряется в кВт*ч);
  • I представляет собой количество солнечное энергии, которое падает на крышу дома. Его измеряют в кВт*ч/м²;
  • V является номинальной мощностью одной солнечной батареи (измеряется в Вт);
  • U представляет собой величину солнечной радиации, на которую производитель ориентировался при расчете номинальной мощности. Эта величина постоянная и равна 1 000 Вт/м² или 1 кВт/м²;
  • Ко представляет собой поправочный коэффициент количества солнечной энергии, падающей на панель. Он зависит от угла наклона батареи и угла ее отклонения от южного направления;
  • Кпот. является коэффициентом, который характеризует, сколько электрической энергии теряется во всей системе автономного электроснабжения.
Читайте также:  Как выбрать солнечную батарею для дома

Особенности используемых в формуле показателей

Величина солнечной энергии, падающей на крышу и стены дома в определенном регионе, может измеряться для разных промежутков времени. Метеорологи рассчитывают годовую, месячную и дневную солнечную радиацию, приходящуюся на 1 кв. м. Если этот показатель годовой, то его единицей измерения является кВт*ч/(м²*год). Вместо слова «год» могут быть слова «месяц» и «день». Например, показатель 5 кВт*ч/(м²*день) означает, что за 1 день на 1 кв. м. падает 5 кВт солнечной энергии.

В вышеуказанную формулу можно подставлять любой показатель. Если подставляется годовая солнечная энергия, то результатом расчета будет такое количество электроэнергии, сколько панель производит за 1 год. Так же с показателями других промежутков времени. Наиболее целесообразно высчитывать месячную выработку электрической энергии. Интенсивность освещения в каждом месяце различна, и для выработки, например, 10 кВт электричества, надо использовать разное количество панелей, а также подключать соответствующее число аккумуляторов.

Выражение  включает в себя 2 показателя, но его следует рассматривать, как один. Это потому, что он показывает производительность панели. Более правильно было бы использовать выражение , где S является площадью светочувствительных пластин в кв. м. Оно позволяет определить КПД солнечных батарей, а точнее, какую часть света может превратить 1 кв. метр панели в электрическую энергию.

Например, есть немецкая монокристаллическая панель SolarWorld 2015. Она имеет площадь 1,995 кв. метр и мощность 320 Вт. Ее КПД составляет 320 / (1 000 * 1,995) * 100 = 16,04%. Для применения в формуле выражение на 100 умножать не надо. В ней следует использовать число 0,1604.

Второе выражение не используют потому, что результатом будет мощность 1 кв. метра панели. Батарея редко имеет такую площадь. Этот ее показатель значительно больше. Например, вышеупомянутое изделие имеет площадь 1,995 м². В итоге, конечный рассчитанный по формуле результат нужно было бы умножать на площадь. Получилось бы так, что в числителе и знаменателе выражения будет S. А если S делить на S выйдет 1.

Читайте также:  Уличное освещение от светильников на солнечных батареях

берут из специальной таблицы, в которой разной величине угла наклона и угла отклонения от южного направления соответствует определенный коэффициент. Такую таблицу могут предоставить производители.

poluchi-teplo.ru

Как правильно рассчитать мощность солнечной батареи

В сегодняшней статье мы поговорим с вами о том, как правильно рассчитать мощность солнечной батареи для дома и дачи. Итак, вы приняли решение установить на своём загородном доме или дачном участке солнечные батареи, дабы стать независимым от общей электрической сети, всегда иметь в доме электричество, а также сэкономить на оплате квитанций по коммунальным платежам.

Что ж это решение верно. Но, чтобы солнечные модули действительно принесли вам выгоду, надо предварительно в обязательном порядке правильно подобрать мощность солнечных батарей. А для этого следует взять листок и ручку и произвести необходимые подсчёты либо обратиться к грамотным специалистам, которые подберут вам необходимое оборудование, ориентируясь на ваши запросы.

Не важно, где вы хотите установить солнечные модули: в собственном доме или на даче. Первое, что следует сделать – это подсчитать, сколько вам необходимо электрической энергии в месяц и в сутки в среднем. Есть два варианта подсчёта: зафиксировать данные электросчётчика. Желательно записать данные за несколько месяцев, чтобы получить более точное усредненное значение. Либо подсчитать сумму мощности всех электроприборов, установленных в вашем доме. Мощность каждого из них можно посмотреть в технической документации или в интернете.

Итак, берем мощность каждого отдельного прибора и умножаем ее на время работы в сутки. Таким образом, мы получим данные по каждому прибору. Затем необходимо сложить эти данные и получим итоговую цифру, на которую будем ориентироваться. Необходимо помнить о том, что, если вы планируете установку контроллера и инвертора для солнечных панелей, то их также следует учитывать при определении суммы потребляемой вами электроэнергии.

Приведем пример: допустим, у вас есть следующие бытовые приборы: холодильник, телевизор, ноутбук, стиральная машинка, электрический котёл, утюг и некоторые другие вспомогательные приборы. Также ваш дом оборудован 10 энергосберегающими лампочками.

Итак берем калькулятор и проводим вычисление, на питание основных потребителей электроэнергии вам необходимо 15,9 кВт*ч энергии в сутки. Добавим сюда работу дополнительных приборов, таких как электрический чайник, насос, кухонный комбайн, пылесос, фен и т.д. И получим среднюю цифру в 20 кВт*ч в сутки. На месяц вам необходимо 600 кВт*ч энергии. А это значит, что солнечные панели должны вырабатывать столько энергии для того, чтобы покрыть ваши текущие расходы. Конечно, если вы планируете установку солнечных панелей для дачи, так вам потребуется намного меньше электрической энергии. Тем более, если вы используете ее только посезонно, например, только в летний период.

О чём говорит мощность солнечной батареи? Пример расчета, вы выбрали солнечный модуль с мощностью в 240 Вт. На деле, это означает, что данная солнечная батарея выдаст вам 240 Вт энергии солнца при инсоляции 1000 Вт*м2. Конечно, солнечные лучи не падают на батареи круглые сутки и сезонность работы такой батареи также играет свою роль. Зимой батарея работает 4-6 часов. А, значит, максимально она может выработать 1440 Вт*ч электроэнергии. Летом батарея работает максимум 8-10 часов. Таким образом, максимальный показатель электроэнергии составит 2400 Вт*ч. Это идеальный случай, когда солнечная батарея постоянно выдает свою максимальную мощность. В реальности нужно учитывать уровень инсоляции.

Помните о том, что солнечные батареи вырабатывают энергию из полученных солнечных лучей. А значит, чем больше света попадёт на батареи, тем больше энергии она способна выработать. Максимальное количество энергии модуль выработает тогда, когда солнечные лучи падают на него под углом в 90° и при безоблачном небе. В темное время суток энергия не вырабатывается, т.к. нет солнца. Поэтому необходимо установить аккумуляторные батареи, где в дневное время энергия будет скапливаться, а затем равномерно расходоваться в течение суток.

Во время пасмурной погоды работоспособность любой солнечной системы падает в среднем на 15-20%. Аналогично, выработка снижается в вечерние и утренние часы, когда интенсивность излучения падает, а угол падения солнечных лучей на поверхность панелей наименее оптимален.

При подборе необходимого вам оборудования следует также учитывать еще один немаловажный фактор: это уровень инсоляции именно вашего региона. Уровень инсоляции показывает, сколько конкретно энергии солнца попадает на отдельную единицу площади солнечного модуля. Может случиться так, что вы живете в таком городе, где солнечного света недостаточно, а значит те панели, которые вы выбрали для покупки, не смогут работать на всю свою заявленную мощность.

Уровень инсоляции индивидуален для каждого региона нашей страны. Найти необходимые цифры можно в специализированных справочниках, а также на разнообразных метеорологических сайтах. Для крупных городов сегодня можно найти актуальные данные по всем месяцам года. Понятно, что наибольший уровень инсоляции будет зафиксирован в летнее время, а зимой уровень инсоляции, конечно, существенно, снижается.

Итак, у вас есть данные по уровню инсоляции вашего региона, а также то, сколько энергии вы потребляете в сутки. Теперь возможно подсчитать, сколько панелей вам необходимо установить для полноценной работы всех электроприборов в доме.

Для начала необходимо норму по электроэнергии разделить на показатель инсоляции каждого конкретного месяца. Очень важно рассчитать все по месяцам, ведь уровень инсоляции в разные месяца существенно отличается.

Полученную цифру делим на мощность той установки, которую вы решите приобрести (эти данные можно посмотреть в техническом паспорте либо в Интернете). Таким образом, получаем искомую цифру. Приведём конкретный пример.

Допустим, в сутки вам необходимо 20 кВт*ч электроэнергии. Инсоляция в вашем регионе в июле (Москва) – 5,3 кВт*ч на квадратный метр площади. Мощность одной выбранной вами солнечной батареи составляет 240 Вт или 0,24 кВт. Итого: 20/5,3/0,24 = 15,7 солнечных панелей заявленной мощности вам потребуется.

Если вы планируете покупку солнечных панелей только для дачи, то там, в среднем, вам потребуется 5 Квт*ч*сутки электроэнергии. Возьмём панели мощностью 185 Вт или 0,185 кВт. Итого 5/5,3/0,185 = 5 панелей заявленной мощности необходимо будет установить.

Но вы должны будете просчитать данные показатели по всем месяцам, когда планируется использование солнечных панелей для получения более точной цифры по количеству необходимых вам солнечных модулей.

Что можно сделать, чтобы повысить эффективность работы солнечных батарей:

— заменить в доме все обычные лампы накаливания на энергосберегающие,

— использовать бытовые приборы только класса А, А++, А+++.

— избегать затенения солнечного оборудования,

— правильно устанавливать угол наклона солнечных батарей в зависимости от вашего региона и времени года,

— своевременно очищать оборудование от пыли, грязи, особенно — наледи и снега, если вы используете солнечные модули в зимний период,

— правильно произвести монтаж оборудования, чтобы достигнуть максимальной производительности.

Как рассчитать мощность солнечной батареи для дома и дачи В сегодняшней статье мы поговорим с вами о том, как правильно рассчитать мощность солнечной батареи для дома и дачи.

Источник: gws-energy.ru

Что нужно для того, чтобы измерить мощность солнечной батареи и не купить, например, батарею мощностью 70 Ватт с маркировкой 100 Ватт? Всего лишь самый дешёвый тестер (мультиметр) и ясная солнечная погода.

Способ №1 (самый простой).

Расположите солнечную батарею так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

Измерьте вольтметром напряжение холостого хода (Voc), подключив щупы вольтметра к разъемам солнечной панели.

Измерьте амперметром ток короткого замыкания (Isc), подключив щупы амперметра к разъемам панели.

Посчитайте мощность по следующей эмпирической формуле: P = Voc * Isc * 0.78, где коэффициент 0,78 — это примерное усреднённое отношение паспортной мощности панели к произведению паспортных Voc и Isc.

Чтобы определить мощность солнечной батареи, у которой в паспорте указано 100 Вт, мы провели измерения напряжения и тока, которые видны на фото выше: Voc = 22.08 Вольт и Isc = 6.37 Ампера. Подставив эти значения в формулу, можно узнать, что её мощность составляет 22.08 * 6.37 * 0.78 = 109.7 Вт.

Конечно, это не точный способ измерения и он даёт погрешность около 10%, но если при таком измерении Вы насчитаете только 70-80 Вт, то стоит задуматься, сколько же Вы реально заплатите за каждый Ватт мощности.

На протяжении многих лет мы неоднократно измеряли ток короткого замыкания солнечных батарей и заметили, что весной-летом при ясном небе в Москве ток обычно лежит в пределах от 95 до 105% от номинала. Самые низкие показания тока (около 70-80% от номинала) наблюдаются зимой и связано это с очень низким углом Солнца над горизонтом и большими потерями солнечной энергии в атмосфере.

Все фото измерений сделаны в Москве, в августе при температуре около 18 градусов в очень ясную погоду, в связи с чем мощность панели превышает свой номинал.

Способы измерения мощности солнечных батарей Как измерить мощность солнечной батареи мультиметром и не купить кота в мешке? Простые способы измерения реальной мощности солнечных панелей.

Источник: www.solnechnye.ru

При помощи автономной солнечной установки можно обеспечить энергией все электроприборы в вашем доме. Главное понять и правильно оценить потребности вашего домохозяйства и те мощности, которые вам необходимо установить.

Компоненты домашней солнечной системы.

Домашняя фотоэлектрическая система, как правило, состоит из 6 базовых элементов:

Рассчитываем количество солнечных батарей и аккумуляторов за 6 шагов

1. Расчет энергопотребления. Первым шагом является составление спецификации, то есть, техническое описание системы. Сначала нужно составить список всех электроприборов в доме, выяснить их потребности и занести в список.

Ниже приведены ориентировочные данные о средних значениях мощностей некоторых приборов. Это приблизительные оценки. Для того, чтобы рассчитать потребляемую мощность системы с инвертором (для приборов переменного тока), нужно сделать поправки для каждого прибора. Потери в инверторе могут быть до 20%. Холодильник, компрессор в момент пуска потребляют мощность в 5-6 раз больше паспортной, поэтому инвертор должен выдерживать кратковременные перегрузки в 2-3 раза выше номинальной мощности. Если приборов с высокой мощностью много, то для более дешевого и оптимального выбора инвертора, следует предусматривать отдельное включение таких приборов при работе.

Таблица1. Среднее потребление энергии электроприборами

2. Определяем количество солнечной энергии, которую можно получить в данной местности. Здесь важны два фактора:

  • среднегодовая солнечная радиация,
  • среднемесячные ее значения для худших погодных условий.

Средний месячный уровень солнечной радиации в некоторых городах Украины (кВт * ч / м.кв / день)

Исходя из этой таблицы, можно выбрать мощность солнечных панелей с учетом реального потребления, кроме случаев чрезвычайно длительных периодов плохой погоды. Используя модули различной мощности (50, 100, 250 Вт) можно набрать мощность для собственной системы.

3. Выбор емкости аккумуляторов зависит от потребности в энергии и от количества панелей — от зарядного тока. Для аккумуляторов AGM нужен 10% зарядный ток. Для панели на 90 Вт минимальная емкость аккумулятора 60 А * ч, а оптимальная — 100 А * ч. Она накопит 1,2кВт * ч при напряжении 12 В.

Для систем потребления до 1,5 кВт * ч в день лучше использовать аккумуляторы и панели на 12 В. Системы, которые потребляют свыше 3 кВт * ч в день — целесообразно комплектовать солнечным генератором и аккумулятором с напряжением 48 В.

Наиболее доступными по цене являются автомобильные аккумуляторы, но они предназначены для передачи больших токов в течение короткого времени. Эти аккумуляторы плохо выдерживают длительные циклы зарядки-разрядки, типичные для солнечных систем.

Специальные солнечные аккумуляторы имеют низкую чувствительность для работы в циклическом режиме и низкий саморазряд. Производители изготавливают аккумуляторы с разным временем разрядки. Выбранный аккумулятор должен иметь запас энергии примерно на 4 суток.

Для того, чтобы аккумулятор прослужил заявленный производителем срок, он должен использоваться в комплекте с качественным контролером заряда. Контролируется ток заряда, который снижается при полностью заряженном аккумуляторе. Прерываются поставки энергии при разрядке до критического уровня.

4. Выбор инвертора. Для пользования бытовыми приборами используется переменный ток (220В, 50 Гц), а для этого в солнечной системе с аккумулятором должен быть инвертор. Желательно использовать инверторы с синусоидальным выходом — это качественная энергия для приборов.

5. Срок службы компонентов. Важным фактором является срок эксплуатации отдельных компонентов. Фотопанели предусматривают снижение производительности до 80% в 20-м году, хотя могут работать 25 лет. Каркасы и крепления тоже надо выбирать на такой срок: алюминий или нержавейка. Аккумуляторы имеют средний срок службы 4-12 лет (зависит от характера циклов заряд / разряд). Инверторы преимущественно служат 10-15 лет, а гарантийный период устанавливают на 5 лет.

6. Моральное устаревание и утилизация. Об этом мало говорят, но от этого никуда не деться. Все технологические новшества и солнечные установки в том числе, имеют свойство устаревать морально. С каждым годом появляются все более продуктивные и дешевые солнечные панели, аккумуляторы и другие компоненты. И домовладельцы, стремясь получить большую продуктивность и больше зарабатывать на зеленом тарифе меняют их намного раньше, чем они износятся. Это приводит к появлению огромного количества свалок с ненужными панелями и аккумуляторами в Европе и США. И конечно же встает вопрос их утилизации либо отправки на свалки в страны третьего мира. У нас пока такой проблемы нет, но появляется интересная возможность покупки таких морально устаревших компонентов на биржах обмена, как например площадка SecondSol в Германии.

Зеленые решения — тематическое сообщество При помощи автономной солнечной установки можно обеспечить энергией все электроприборы в вашем доме. Главное понять и правильно оценить потребности вашего

Источник: rodovid.me

Прежде чем устанавливать на крыше своего дома солнечные батареи, естественно нужно произвести расчет самой батареи, а также всех элементов сети. Правильность всех расчетов позволит избежать лишних затрат, получить максимальный эффект от внедрения, а также обеспечить нормальное функционирование всей системы.

Итак, чтобы узнать, панели какой мощности потребуются для установки, необходимо знать мощность всех электроприемников в доме. Если от солнечных батарей будет запитана только часть приемников, то соответственно нужно знать мощность только этих приемников.

Мощность всегда можно посмотреть в паспорте приемника.

Допустим, мы хотим запитать несколько лампочек и насос от солнечной панели. Составляем небольшую табличку, где указываем мощность, число часов работы, суточное потребление и сумму всех электроприборов.

Перемножаем столбики и получаем потребление за сутки.

Следующий шаг – это определение годового количества солнечной радиации, характерное для данного региона. Информацию можно найти в интернете либо у метеорологов. Это таблицы, в которых указан уровень солнечной радиации (кВт·ч/м²/день) с разбивкой по месяцам.

Солнечная инсоляция в городах Беларуси:

В качестве примера возьмем г. Гомель.

Согласно таблице наилучший уровень инсоляции будет в июне месяце, а наихудший – в декабре.

Наше суточное потребление составляет 4800 Вт·ч. Также учтем потери на разряд-заряд аккумулятора (чуть позже я остановлюсь на этом подробнее). Величину потерь примем 20%.

W=4800×1,2=5760 Вт·ч=5,76 кВтч

Допустим, нам надо установить панели мощностью 260 Вт (модель CHN 260-72, пр-во Китай) и номинальным напряжением 24 В. Определим сколько способна выработать электроэнергии в сутки одна такая панель летом и зимой. ( W = k Pw E / 1000). 1000 Вт/м2 – это интенсивность солнечной радиации, при которой панели тестируються. На выходе получаем Втч.

W= 0,5× 260×5,09= 661,7 Втч

W=0,7× 260×0,69=125,5 Втч,

где 0,5 и 0,7 поправочные коэффициенты для летнего и зимнего периода соответственно.

5,09 и 0,69 значения солнечной инсоляции, взятые из таблицы для г. Гомеля.

Делим полученные значения на максимальную мощность панели и округляем:

Получается, что летом для обеспечения эл. энергией заданной нагрузки понадобится 8 панелей, зимой же таких панелей понадобилось бы 45. Т.е. в зимнее время 8 панелей не смогут полностью обеспечить эл. энергией выбранные электроприборы.

Мы произвели довольно грубый расчет, но в любом случае суть его такова. На практике в зависимости от ситуации принимают во внимание угол наклона панелей, поворот и т.д., и вводят поправочные коэффициенты. Одним из преимуществ батарей является то, что их постепенно можно наращивать, увеличивая тем самым мощность. Изначально можно поэкспериментировать с батареями небольшой мощности, а затем увеличить их количество.

В следующих статьях остановимся на выборе остальных элементов автономной сети: выборе инвертора, аккумуляторов.

Если Вы заметили недочеты или не согласны с чем-либо, оставляйте комментарии, всегда готовы обсудить.

Как рассчитать мощность солнечных батарей Как рассчитать мощность солнечных батарей Прежде чем устанавливать на крыше своего дома солнечные батареи, естественно нужно произвести расчет самой батареи, а также всех элементов сети.

Источник: www.energya.by

Дата публикации: 10 февраля 2014

Прежде чем приступить к приобретению и монтажу солнечной энергоустановки, нужно точно для себя выяснить:

  • Существует ли необходимость в собственной автономной энергетической системе?
  • Какие задачи должны решаться с помощью солнечных батарей?

И уже, исходя из ответов на поставленные вопросы, принимать решение о покупке солнечных панелей или отказе от них. Следующий шаг – это расчет требуемой мощности. В случае использования солнечных батарей в качестве основного источника энергии показатель мощности будет один, если же Вы хотите использовать систему в качестве резервной – другой.

Первый вариант наиболее дорогостоящий, потребуется большее количество батарей, более емкий аккумулятор и т.д. Второй вариант, наоборот, менее затратный, ведь в этом случае речь идет об ограниченном числе электроприборов, которые Вы будете использовать, например, при отключении электричества. Аварийные ситуации происходят достаточно редко, поэтому даже небольшое число солнечных батарей успеет преобразовать и накопить энергию, необходимую для поддержания жизнедеятельности Вашего дома.

Ориентировочный расчет

Чтобы произвести предварительный расчет требуемой мощности системы, необходимо суммировать мощность потребителей электроэнергии, которые включаются одновременно. Это значение характеризует мощность нагрузки (Pнагр), зная которую вы сможете рассчитать мощность инвертора (Pинв) по формуле: Pинв = 1,2Pнагр. Например, при мощности нагрузки в 1кВт, мощность инвертора должна быть не ниже 1200 Вт. Правильный расчет всех компонентов системы позволит Вам получить максимальную выгоду от ее установки дома и избежать ненужных трат.

Расчет необходимого количества солнечных батарей (N) потребует знание еще нескольких показателей:

  • энергоемкость дома,
  • коэффициент инсоляции для Вашего региона (Кинс.),
  • номинальная мощность солнечных батарей, которые вы планируете использовать (Pном.).

Показателем, характеризующим энергоемкость дома, является среднесуточное потребление (Wср.сут.). Коэффициент инсоляции определяется согласно статистическим данным, которые учитывают продолжительность светового дня, количество пасмурных дней и другие показатели. Данный коэффициент находится по специальным картам солнечной инсоляции, его значения для некоторых городов России, Украины и Белоруссии приведены в таблице 1.

Теперь можно произвести расчет:

Определяем выработку энергии одним солнечным модулем в сутки:

Определяем количество солнечных батарей, которое потребуется для энергообеспечения дома:

При расчете среднесуточного потребления не забывайте учитывать возможные потери на заряд/разряд аккумулятора, в среднем это значение принимают за 15-20%. Если Вы планируете использование солнечных батарей в течение всего года, коэффициент инсоляции должен выбираться наименьший за год. Расчет должен производиться не только для солнечных батарей, но и для аккумуляторов, контроллеров заряда, инвертора. Как показывает практика, тщательный расчет показателей энергосистемы, сокращает ее стоимость на 20-30%, а учитывая то, что расходы на приобретение и монтаж солнечных батарей и других элементов значительные, то экономия получается ощутимая.

Наглядный пример в помощь

Для небольшого дачного дома среднесуточное потребление электроэнергии составляет порядка 2-5 кВт*ч, для загородного коттеджа это значение может равняться 10-50 кВт*ч и даже больше. В таблице 1 приведены основные энергопотребители, которые встречаются в каждом доме. На основе представленных данных и произведем расчет.

Получается, энергоемкость нашего дома составляет 5,96 кВт, а с учетом потерь на разряд/заряд аккумулятора 5,96*1,15=6,854кВт. Допустим, что наш дом находится в Ялте, и мы планируем использовать устанавливаемую солнечную систему в течение всего года, тогда коэффициент инсоляции составит 3,57. Номинальная мощность солнечных батарей, которые мы приобрели, равняется 100 Вт. За сутки один модуль сможет вырабатывать 100*3,57=357 Вт. Вычисляем количество: 6,854/0,6426=19,2, округляем в большую сторону и получаем 20 солнечных батарей смогут обеспечить дом, потребляющий около 6000 Вт*ч/сутки.

Как видно из расчета, наиболее прожорливыми приборами являются лампы накаливания и холодильник. Чтобы снизить энергозатраты рекомендуют:

  1. Заменить лампы накаливания на светодиодные энергосберегающие, потребляя всего 4 Вт они излучают светопоток, аналогичный 90 Вт лампе накаливания.
  2. Если обклеить холодильник пенопластом и отодвинуть от стены на 15 и более сантиметров, это снизит его энергопотребление на 15%.

Деньги любят счет…

Рекомендовано использовать солнечные панели мощностью от 100 до 140 Вт, рассчитанные на работу с 12 В аккумуляторами. Более мощные образцы имеют значительный вес и площадь, что затрудняет их установку и эксплуатацию, а менее мощные модели использовать для среднего дома крайне нецелесообразно. Из этих критериев и будем рассчитывать стоимость.

Модуль, изготовленный из поликристаллического кремния, мощностью в 100 Вт стоит порядка 5000 рублей. В нашем примере количество модулей равняется 20 шт., то есть только на них мы потратим 100 тыс. рублей. К этой сумме нужно прибавить стоимость аккумуляторов, инвертора и креплений для СБ. Для системы, которую мы рассматривали в примере, понадобится 7 аккумуляторов, стоимость одного составляет около 9-10 тыс. рублей, то есть мы потратим еще около 60-70 тыс. рублей. В итоге с учетом затрат на крепления для солнечных батарей, инвертор и другие необходимые элементы получаем сумму в 200 тыс. рублей, именно столько необходимо будет потратить на автономную систему энергоснабжения для дома, потребляющего около 180 кВт в месяц. А дальше уже Вам решать, насколько будет выгодна подобная конструкция из модулей на Вашем загородном участке.

Статью подготовила Абдуллина Регина

Рассчитываем панели для автономной энергосистемы:

Раз, два, три… Раз, два, три….расчет произвели… Дата публикации: 10 февраля 2014 Прежде чем приступить к приобретению и монтажу солнечной энергоустановки, нужно точно для себя выяснить: Существует

Источник: altenergiya.ru

Читайте также:  Зарядка на солнечной батарее для телефона Поделитесь статьей в соц. сетях:

avtonomny-dom.ru

Расчет солнечных панелей: подробная инструкция для установки

Содержание:

  • Рассчитываем мощность батарей
  • Рассчитываем емкость аккумулятора для панелей
  • Просчет солнечных панелей для дачи или частного дома

Солнечные батареи с каждым годом становятся все более востребованной альтернативой традиционного энергоснабжения. Первое, что предстоит сделать человеку, решившему установить солнечные панели – правильно оценить потребности своих владений, произвести расчеты.

Выяснить необходимую мощность нужно на основании количества потребляемой вами энергии  (показания посмотрите по счетчику).

Нужно понимать, что солнечные батареи вырабатывают электричество исключительно в светлое время суток. Кроме того, лишь чистое небо и падение лучей под прямым углом гарантирует выдачу паспортной мощности. В противном случае выработка электроэнергии падает. Так, при пасмурной погоде мощность батарей подает в 15-20 раз.

Производя расчет, берите рабочее время, при котором панели функционируют на всю – с 9 до 16 часов. Летом батареи работают от рассвета до заката, но вечером или утром выработка составляет 20-30% от всей дневной.

Следовательно, массив батарей мощностью 1 кВт при солнечной погоде летом за 7 часов выдает 7 кВт/ч энергии, т.е. 210 кВт в месяц. Те 3 кВт, которые вырабатываются утром и вечером, оставьте про запас на случай пасмурной погоды. Кроме того, панели устанавливают стационарно, из чего следует, наклон солнечных лучей тоже будет меняться, что не позволит 100% выработку.

Однако даже на 210 кВт/ч за месяц не стоит полностью полагаться. Существует ряд факторов, которые могут снизить показатели:

  • Географическое положение – не может в нашем регионе в месяце быть 30 солнечных дней. Нужно просмотреть архивы погоды и узнать примерное количество пасмурных дней. Не менее 5-6 дней точно окажутся несолнечными, солнечные панели не дадут и половины обещанной электроэнергии. Вычеркиваем 4 дня, получаем уже не 210 кВТ/ч, а 186.
  • Смена сезонов – осенью и весной световой день короче, а пасмурных дней больше. Если собираетесь пользоваться энергией солнца с марта по октябрь, увеличьте массив модулей на 30-50% в зависимости от места жительства.
  • Дополнительно оборудование – происходят серьезные потери в инверторе, а также аккумуляторах.

Рассчитываем емкость аккумулятора для панелей

Минимальный запас емкости должен быть таким, чтобы его хватало на работу ночью. Например, если с вечера до утра вы потребляете 3кВт/ч энергии, то запас энергии для аккумулятора должен быть именно таким.

Аккумулятор нельзя разряжать полностью.

Специализированные АКБ можно разрядить до 70% максимум. В противном случае они быстро выходят из строя. Обычные автомобильные АКБ нельзя разряжать более чем на 50%. Поэтому аккумуляторов нужно ставить вдвое больше, чем требуется, чтобы не менять их каждый год.

Оптимальный запас емкости АКБ – суточный запас энергии. Так, 10 кВТ/ч за 24 часа требует такой же рабочей емкости АКБ. Лишь тогда вы сможете прожить пару пасмурных дней без перебоев. В обычные дни аккумуляторы будут разряжаться частично (на 20-30%), что продлит срок эксплуатации АКБ.

Немаловажная деталь – КПД свинцово-кислотных аккумуляторов, равный 80%.  Т.е. при полном заряде аккумулятор берет на 20% больше, чем сможет отдать. Кроме того, КПД зависит от разряда и заряда тока, чем они больше, тем ниже КПД. Например, подключая чайник на 2кВт через инвертор и аккумулятор на 200Ач, то в последнем напряжение резко упадет, т.к. ток разряда будет около 250А, а КПД отдачи упадет до 40-50%.

С учетом потери полученной от батарей энергии в аккумуляторе и преобразовании постоянного напряжения в переменный ток 220 В, потери составляют 40%. Поэтому запас емкости АКБ и массив батарей нужно увеличить на 40%, чтобы перекрыть затраты.

Существует еще один похититель энергии – контроллер заряда аккумулятора. Их производят двух типов: PWM(ШИМ) и МРРТ. Первые более простые и дешевые, но они не трансформируют энергию, а потому панели не отдают в АКБ всю мощность (максимум 80% от паспортной мощности). МРРТ отслеживает пик мощности и может преобразовать энергию, понижая напряжение и поднимая ток зарядки, что увеличивает отдачу до 99%.

Ставя дешевый PWM, прибавьте массив солнечных батарей еще на 20%.

Просчет солнечных панелей для дачи или частного дома

Если вы не знаете потребление, а только планируете питать дачу энергией солнца, то рассчитать расход достаточно просто. Холодильник, потребляющий 370 кВт/ч, значит, в месяц он потребит 30,8 кВТ/ч энергии (1,02 кВт/ч).          Считаем свет: энергосберегающие лампочки по 12 ватт каждая, а их у вас 6 штук и светят они около 6 часов за сутки. Значит, вам необходимо 12*6*6 =432 Вт/ч.

По такому же принципу посчитайте потребление телевизора, насоса и других приборов. Сложив все, вы получите суточное потребление энергии, умножайте на количество дней в месяц и получите примерную цифру. Например, вы получили расход 70 кВт/ч, прибавляем 40% энергии, теряющейся в инверторе и АКБ. Значит, вам нужны батареи, вырабатывающие 100 кВт/ч (100/30/7 = 0,476 кВт в день). Нужен комплект батарей мощностью 0,5 кВт. Но этого массива хватит только летом, даже осенью и весной в пасмурные дни могут быть перебои с электричеством. Поэтому нужно удвоить массив панелей.

Стоимость системы может отличаться в зависимости от комплектующих: фотомодулей, батарей и инверторов. Примерная цена 1 кВт мощности колеблется в пределах 2,5-3 евро.

Имея расчет стоимости системы, легко и быстро можно посчитать окупятся ли затраты на ее приобретение.

ekobatarei.ru

Расчёт солнечных панелей для дома. Расчет солнечных батарей - EnergyStock.

Мощность солнечных панелей для автономных систем выбирается исходя из необходимой вырабатываемой мощности, времени года и географического положения.

Необходимая вырабатываемая мощность определяется мощностью, требуемой потребителям электроэнергии, которые планируется использовать. При расчете стоит учитывать потери на преобразование постоянного напряжения в переменное, заряд-разряд аккумуляторов и потери в проводниках.

Солнечное излучение величина не постоянная и зависит от многих факторов – от времени года, времени суток, погодных условий и географического положения. Эти факторы также должны учитываться при расчете количества необходимой мощности солнечных панелей. Если планируется использование системы круглогодично, то расчет должен производиться с учетом самых неблагоприятных месяцев с точки зрения солнечного излучения.

При расчете для каждого конкретного региона необходимо проанализировать статистические данные о солнечной активности за несколько лет. На основании этих данных, определить усредненную действительную мощность солнечного потока на квадратный метр земной поверхности. Эти данные можно получить у местных или международных метеослужб. Статистические данные позволят с минимальной погрешностью спрогнозировать количество солнечной энергии для вашей системы, которая будет преобразована солнечными панелями в электроэнергию.

Для примера рассмотрим усредненную дневную инсоляцию по месяцам с одного из серверов метеослужб для г. Москвы. Данные указаны с учетом атмосферных явлений и являются усредненными за несколько лет.

Единица измерения инсоляции в таблице кВт*ч/м2/сутки.

Угол наклона плоскости, градусы по отношению к земле (0°- инсоляция на горизонтальную плоскость, 90 – инсоляция на вертикальную плоскость и т. п.), при этом плоскость ориентирована на Юг.

Янв. Февр. Март Апр. Май Июнь Июль Авг. Сент. Окт. Нояб. Дек. Среднегодовая инсоляция кВт*ч/м2/сутки 0°
0.75 1.56 2.81 3.87 5.13 5.27 5.14 4.30 2.63 1.49 0.81 0.50 2.86
40° 1.51 2.55 3.78 4.34 5.12 4.97 5.00 4.57 3.22 2.20 1.46 1.08 3.32
55° 1.66 2.70 3.82 4.16 4.70 4.51 4.53 4.31 3.17 2.27 1.58 1.20 3.22
70° 1.72 2.71 3.67 3.79 4.18 3.95 4.00 3.85 2.97 2.24 1.62 1.26 3.00
90° 1.65 2.50 3.19 3.07 3.21 2.99 3.05 3.08 2.51 2.02 1.53 1.22 2.50
Оптимальный угол 72.0 63.0 50.0 34.0 20.0 11.0 16.0 27.0 43.0 58.0 69.0 74.0 44.6

Как видно, самым неблагоприятным месяцем для данного региона является декабрь, дневная усредненная инсоляция на горизонтальную поверхность земли составляет 0,5 кВтч/м2/сутки, на вертикальную – 1,22 кВт*ч/м2/сутки. При угле наклона плоскости относительно земли 70 градусов инсоляция будет составлять 1,26 кВтч/м2/день, оптимальным углом для декабря является 74 градуса. Самым благоприятным месяцем является июнь и инсоляция на горизонтальную поверхность составит 5,27 кВтч/м2/сутки, оптимальный угол наклона для июня 11 градусов.

Угол наклона солнечной панели, при круглогодичном использовании в системе, которая потребляет в среднем одну и ту же мощность независимо от времени года, должен совпадать с оптимальным углом наклона самого неблагоприятного месяца по количеству солнечной радиации. Оптимальным углом наклона для декабря в г. Москва является 74 градус, таким образом и стоит устанавливать солнечную панель, так как в другие месяцы инсоляция заметно больше, и как следствие выработки электроэнергии будет более чем достаточно. Более того, в зимнее время при углах наклона 70-90 градусов, на солнечной панели не будут скапливаться осадки в виде снега. Если задачей является получение максимальной мощности от солнечных панелей, в течение всего года, то требуется постоянно ориентировать солнечную панель максимально перпендикулярно солнцу.

Формула расчета мощности солнечных панелей

Pсп=Eп*k* Pинс / Eинс, где:

Еп - потребляемая энергия, Втч в сутки;

k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2-1,4.

Формула расчета вырабатываемой энергии солнечными батареями

Eв=Eинс*Pсп/Pинс*k , где:

Pсп - мощность солнечных панелей, Вт;

Ев - вырабатываемая энергия солнечными панелями, Втч в сутки;

Eинс - среднемесячная инсоляция (из таблицы) кВтч/м2/день;

Pинс – мощность инсоляции на земной поверхности на одном квадратном метре (1000Вт/м2);

k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2.

Солнечная батарея не может служить прямым источником электричества, как генератор. В комплекс системы солнечной генерации электроэнергии входят:

  • солнечная батарея;
  • контроллер уровня зарядки аккумуляторных батарей (АКБ);
  • инвертор.

Это накладывает определенные условия при расчете соотношений мощности батареи с емкостью и токов зарядки АКБ и с режимом работы и мощности потребителей. Также, необходимо принимать во внимание, на что ориентирован комплекс.

Это может быть (без элементов управления и преобразования):

  • элемент автономного энергоснабжения (генератор+батарея ->потребитель);
  • источник электроэнергии для одного или группы потребителей (батарея ->потребитель). Причем, потребитель может быть низковольтным.

Расчет солнечной батареи, по своему содержанию, относится к многофакторным расчетам, т.е. изменение одного показателя в цепочке приводит или к изменению характеристик всей системы, или к введению в систему новых элементов. К примеру, две панели, но с разной степенью освещенности (на крыше и на фронтоне) нельзя рассматривать как одну (нужны два контроллера зарядки АКБ), либо ставить отсекающий диод.

За основу для расчета принимается цель установки солнечной батареи и фактическое наличие элементов комплекса с сопрягаемыми характеристиками по напряжению и току. На практике, это означает расчет в направлении от потребителя или от батареи. В большинстве случаев, за основу принимают мощность потребителя и время бесперебойного энергообеспечения в период отсутствия солнечного света или иного источника энергии для подзарядки АКБ.

Физические величины и названия характеристик элементов комплекса солнечной генерации:

  • I - ток (А);
  • U - напряжение (В);
  • Pа - активная мощность (Вт);
  • W - расход электроэнергии (кВтч)
  • Ca - емкость аккумулятора (А*ч). Величина постоянная до момента достижения АКБ допустимого уровня разрядки;
  • T - время освещенности панели (час). Среднемесячное количество часов для конкретного региона, которое зависит от времени года и широты местности.
  • K - число дней. Учитывает работоспособность системы без солнечного освещения.

Методика расчета солнечной батареи

Предлагаемая методика дает общее направление порядка расчета элементов комплекса с солнечной батареей на участке солнечная батарея - АКБ - инвертор без учета некоторых параметров. Расчет ведется из условия среднемесячного потребления и запаса надежности в два дня без активного солнца (K).

Пример расчета

Исходные данные (произвольно):

  • Телевизор мощностью Pа = 100 Вт работает t = 5 часов в сутки и 7 дней в неделю.
  • Осветительные приборы общей мощностью Pа = 1000 Вт, t = 6 часов в сутки и 7 дней в неделю.
  • Освещенность солнечной панели: T - 5,5 час в сутки (широта Москвы, лето).
  • КПД инвертора - 0,9.
  • Характеристика одной аккумуляторной батареи: Са - 225 А/ч, Uа - 12 В.
  • Уровень разрядки АКБ - 0,7.

При суммарной мощности приборов 1100 Вт среднесуточный расход энергии составит Wн = 45,500 кВтч в неделю или Wс= 6,500 кВтч в сутки. Для точного расчета требуется учитывать вероятность одновременного использования приборов, пиковые и реактивные нагрузки или распределение нагрузки в течение суток.

По суммарной мощности потребителей 1,1 кВт выбираем инвертор мощностью 2 кВт (с перспективой роста и компенсации неучтенных нагрузок). Входное напряжение инвертора Uинв- 24 В.

Полная суточная токовая нагрузка на инвертор в А*ч с учетом КПД инвертора: Wc/КПД*Uинв = 6500/0,9*24 = 297,91 А*ч.

Эта величина важна для определения количества АКБ, тока подзарядки и, в конечном счете, надежности системы.

В нашем случае:

  • Токовая нагрузка увеличивается в два раза для обеспечения двухдневного энергоснабжения.
  • Учитываем допустимую глубину разрядки батареи 0,7.
  • Получаем суммарную токовую нагрузку - 297,91*2*0,7 = 851,19 А*ч.

С учетом характеристики одной аккумуляторной батареи Са = 225 А*ч получаем число блоков батарей на напряжение 24 В (напряжение инвертора) 851,19/225 = 3,78. Округляем до 4-х. Для того чтобы получить Uа (12 В) на одну батарею соединяем в одном блоке две батареи последовательно. Итого получается 4 параллельно соединенных блока, состоящих из двух батарей каждый. Всего 8 аккумуляторов.

В дополнение к нагрузке потребителя необходимо добавить нагрузку, учитывающую подзарядку батарей. Она составляет 10% суммарной мощности аккумуляторного модуля (8*225*12) = 21600 Втч*10% = 216 Втч. Суммарная среднесуточное потребление будет составлять - 6500+216 = 6716 Втч.

Для обеспечения системы энергией солнечная батарея должна за время освещенности (T =5,5 часов) выработать среднесуточную потребность в электроэнергии (6716 Втч). Следовательно, блок из солнечных модулей (с выходным напряжением 24 В и мощностью 200 Вт каждый) должен состоять из 6 модулей (6716/5,5*200 = 6,10).

Вывод

Для энергообеспечения потребителя с активной мощностью 1100 Вт требуется 6 модулей солнечных элементов с выходными параметрами: Wmax=200 Вт и Uраб=24 В.

Солнечные батареи весьма целесообразно использовать тогда, когда производимый ими электрический ток перекрывает как минимум 50% потребности дома в электрической энергии. Идеально, если они полностью обеспечивают дом бесплатным электрическим током. Конечно, для того чтобы они могли выполнять любую из этих целей, нужно рассчитать реальную мощность солнечной батареи и на основе этой цифры определить, сколько панелей надо установить на крыше дома, а также какой будет термин их окупаемости.

Формула расчета реальной мощности панели

Сначала стоит отметить, что напрямую зависит от солнечного освещения. Чем больше лучей падает на батарею, тем больше тока она производит. И наоборот.

Производители указывают номинальную мощность , исходя из того, что на 1 кв. метр светочувствительных элементов падает 1 000 Вт солнечной энергии. На такую цифру стоит ориентироваться только тогда, когда в месте расположения частного дома, наблюдается такая же солнечная активность.

Реальную мощность солнечной панели можно рассчитать по формуле:

E = I x x Ko x Kпот .,

  • где Е является реальной мощностью батареи (измеряется в кВт*ч),
  • I представляет собой количество солнечное энергии, которое падает на крышу дома. Его измеряют в кВт*ч/м²;
  • V является номинальной мощностью одной солнечной батареи (измеряется в Вт);
  • U представляет собой величину солнечной радиации, на которую производитель ориентировался при расчете номинальной мощности. Обычно, эта величина постоянная и является равной 1 000 Вт/м² или 1 кВт/м²;
  • Ко представляет собой поправочный коэффициент количества солнечной энергии, падающей на панель. Он зависит от угла наклона батареи и угла ее отклонения от южного направления;
  • Кпот. является коэффициентом, который характеризует, сколько электрической энергии теряется во всей системе автономного электроснабжения.

Особенности используемых в формуле показателей

Величина солнечной энергии, падающей на крышу и стены дома в определенном регионе, может измеряться для разных промежутков времени. Метеорологи (именно они занимаются измерением этого показателя) рассчитывают годовую, месячную и дневную солнечную радиацию, приходящуюся на 1 кв. м. Если этот показатель годовой, то его единицей измерения является кВт*ч/(м²*год). Вместо слова «год» могут быть слова «месяц» и «день». Например, показатель 5 кВт*ч/(м²*день) означает, что за 1 день на 1 квадратный метр падает 5 кВт солнечной энергии.

В вышеуказанную формулу можно подставлять любой показатель. При этом следует помнить, что если подставляется годовая солнечная энергия, то результатом расчета будет такое количество электроэнергии, сколько панель производит за 1 год. Аналогично с показателями других промежутков времени. Наиболее целесообразно высчитывать месячную выработку электрической энергии. Это потому, что интенсивность освещения в каждом месяце различна, и для выработки, например, 10 кВт электричества, надо использовать , а также подключать соответствующее число аккумуляторов.

Хотя выражение включает в себя 2 показателя, его следует рассматривать, как один. Это потому, что он показывает производительность панели . Более правильно было бы использовать выражение , где S является площадью светочувствительных пластин в кв. м. Оно позволяет определить КПД солнечных батарей, а точнее, какую часть света может превратить 1 кв. метр панели в электрическую энергию.

Например, есть немецкая монокристаллическая панель SolarWorld 2015. Она имеет площадь 1,995 кв. метр и мощность 320 Вт. Ее КПД составляет 320 / (1 000 * 1,995) * 100 = 16,04%. Конечно, для применения в формуле выражение на 100 умножать не надо. В ней следует использовать число 0,1604.

Однако второе выражение не используют потому, что результатом будет мощность 1 кв. метра панели . Как известно, батарея редко имеет такую площадь. Этот ее показатель значительно больше. Например, вышеупомянутое изделие имеет площадь 1,995 м². В итоге, конечный рассчитанный по формуле результат нужно было бы умножать на площадь. Получилось бы так, что в числителе и знаменателе выражения будет S. А если S делить на S выйдет 1.

Ко берут из специальной таблицы, в которой разной величине угла наклона и угла отклонения от южного направления соответствует определенный коэффициент. Такую таблицу могут предоставить производители. Также они всегда могут дать полезные консультации, часть которых может касаться выбора аккумуляторов.

Определение потерь электроэнергии в домашней системе

Величину этих потерь учитывает Кпот. Эти потери могут быть в:

  1. Проводах. Величина составляет 1%.
  2. . Составляют от 3 до 7%.
  3. Шунтирующих диодах (0,5%).
  4. Самой батареи при очень малом солнечном излучении (1-3%).

Также потери электроэнергии могут возникать из-за сильного нагрева модуля (составляют 4-8%) и из-за наличия грязи на солнечных панелях или их потемнений (1-3%).

Автономная электрическая система для дома считается оптимальной, если общие потери не превышают 15%. Тогда срок окупаемости сокращается, а также аккумуляторы накапливают больше тока. Кпот составляет 0,85. Однако плохое качество оборудования или неграмотный выбор комплектующих может привести к 30-процентным потерям. Кпот уже составит 0,7.

Пример расчета мощности солнечной панели

Он будет проводиться для вышеупомянутой батареи. Она будет монтироваться в регионе, расположенном на 50° северной широты. Угол наклона панели равен 50°, отклонение от южного направления нулевое. Потери электроэнергии в системе составляют 20%.

Значения используемых показателей являются такими:

  • I = 1 000 кВт*ч/(м²*год);
  • V = 0,32 кВт;
  • U = 1 кВт/м²;
  • Ко = 1,11;
  • Кпот. = 0,8.

Тогда Е = 1 000 * 0,32 / 1 * 1,11 * 0,8 = 284,16 *ч/год . Это означает, что одна панель может выработать 284,16 кВт*ч за один год.

Мощность за месяц июнь составит 5,25 * 30 * 0,32 / 1 * 1,11 * 0,8 = 44,75 кВт*ч/мес., а за месяц декабрь — 0,86 * 31 * 0,32 / 1 * 1,11 * 0,8 = 7,57 кВт*ч/мес.

Расчет количества солнечных батарей

Он делается очень просто: общую потребность в электроэнергии делят на мощность панели. Общую потребность можно определить двумя способами:

  1. Составить список всех электрических устройств , определить примерную продолжительность работы в течение месяца, рассчитать, сколько электроэнергии каждый из них потребляет в месяц (мощность умножается на число часов), и суммировать все полученные цифры.
  2. Поднять квитанции по оплате за электроэнергию и найти самое большое употребленное за один месяц количество кВт*ч. На всякий случай полученную цифру можно умножить на 1,5.

Предположим, что за месяц 3-4 жители дома используют 300 кВт*ч. Чтобы полностью обеспечить себя своей электрической энергией, нужно иметь 300*12/284,16 = 12,66 панелей SolarWorld 2015. Конечную цифру округляют, конечно, в большую сторону. Поэтому покупать надо 13 панелей.

В 1991 году в Германии, в столице Баварии Мюнхене, открылась выставка INTERSOLAR EUROPE. На этой выставке ведущие производители систем солнечной энергетики представили свои самые новейшие разработки.

По замыслу организаторов этой выставки – компании Freiburg Wirtschaft Touristik und Messe GmbH & Co. KG – эта международная выставка была полностью посвящена использованию в различных сферах солнечных элементов фотовольтаики, а также компонентов солнечного теплоснабжения. Выставка сразу же привлекла внимание специалистов из многих стран мира. Она имела большой успех, поэтому организаторы решили сделать ее традиционной и проводить ежегодно.

На выставку, которая проходит в мае-июне, съезжаются руководители крупнейших компаний-производителей, а также компаний, использующих различные виды изделий солнечной энергетики, приезжают разработчики, инженеры, ученые, работающие в этой области.

Все хотят ознакомиться с новыми идеями, новейшими технологиями в области применения энергии солнца. Специалисты обмениваются опытом, представляют свои последние разработки. В выставочных залах можно увидеть миниатюрные зарядные устройства и самые мощные солнечные батареи, прозрачный телевизор на солнечных батареях и солнечный дом, различные приборы, устройства, машины, работающие исключительно от энергии солнца.

Эта выставка не предназначена для широкой публики, а рассчитана исключительно на профессионалов. На ее площадках проводятся семинары, конференции для специалистов, работающих в областях фотовольтаики, систем хранения энергии, возобновляемых отопительных технологий. Для презентации самых интересных разработок выделяются отдельные павильоны.

На двух последних выставках китайские и южнокорейские производители солнечных модулей представили свои новейшие изделия - панели мощностью более 300 ватт.

Солнечная батарея LG 315 N1C-G4 NeON™2

Уже из самого названия этого солнечного модуля южнокорейской компании LG следует, что заявленная мощность этого модуля составляет 315 ватт. Для компании LG очень важно выйти на рынок альтернативных источников энергии не просто в качестве одного из производителей, а в качестве одного из ведущих производителей систем фотовольтаики.

Поэтому гарантия качества продукции является одним из главных приоритетов компании. Солнечные панели разработаны и производятся с использованием самых передовых технологических процессов.

И фотопреобразователи, из которых составлена эта солнечная батарея, выполнены с наивысшими показателями качества и эффективности.

Ячейки выполнены на базе монокристаллического кремния по специальной двусторонней технологии. Благодаря своим качествам эти ячейки способны пропускать солнечные лучи, которые, отражаясь от специального покрытия тыльной стороны ячейки, способствуют повышению генерации электрического тока. То есть каждая ячейка может вырабатывать электрический ток обеими своими сторонами, повышая тем самым мощность модуля.

Модуль LG 315 N1C-G4 NeON™2. Лицевая сторона

Перед сборкой модуля каждая пластина проходит тщательнейший контроль на предмет строгого соответствия размерам (точность до микрометра) и обнаружения возможных механических повреждений. После проверки отобранные ячейки проходят очередную стадию подготовки. Для минимизации отражения солнечного света ячейки проходят стадию жидкостного травления щелочью. Ячейки с лицевой стороны ламинируются трехслойным покрытием EVA (этиленвинилацетат) и специальной отражающей пленкой с тыльной.

Модуль LG 315 N1C-G4 NeON™2. Тыльная сторона

Затем собранный модуль инкапсулируется для защиты ячеек от проникновения влаги, после чего покрывается трехмиллиметровым антибликовым противоударным стеклом. Рама модуля выполнена из анодированного профильного алюминия. На тыльной стороне устанавливается многофункциональная распределительная коробка с байпасными диодами.

Многофункциональная распределительная коробка

Благодаря такой технологии изготовления модули LG NeON ™ 2 имеют характерный черный цвет, что делает их привлекательными еще и с эстетической точки зрения.

Номинальная мощность 315 ватт. Эффективность 19.2% N-типа Размеры (ДхШхТ) 1640х1000х40 миллиметров Вес 17. 0 ± 0.5 кг Тип разъемов МС-4 Класс защиты IP67

Стоимость модуля 30000 рублей

Солнечная батарея BenQ SunForte 333 PM096B00

В 2001 году на Тайване, в городе Синьчжу, произошло объединение двух крупных китайских компаний, работающих в области фотовольтаики. Новое объединение получило название BenQ Solar. Эта объединенная компания сразу заявила о себе, выпустив на мировые рынки высококачественные мощные гелиевые модули.

Солидная научно-исследовательская база и высокотехнологичные производственные мощности позволяют компании постоянно совершенствовать свою продукцию, внедряя самые передовые технологии. Начиная с 2013 года, компания приступила к производству гелиевых модулей по так называемой «обратно-контактной технологии.

Применение этой технологии дало возможность резко повысить мощность солнечных батарей при одновременном уменьшении размеров. Параллельно была увеличена и эффективность изделий.

Солнечная батарея SunForte PM096B00

Модуль SunForte PM096B00 – это на сегодняшний день самый мощный модуль, выпускаемый компанией BenQ Solar. Он выполнен по обратно-контактной технологии, что позволило получить выходную мощность 333 ватта при подтвержденной эффективности 20.4%.

По сравнению с традиционными модулями при равных габаритных размерах эти солнечные батареи производят значительно больше электроэнергии, что дает возможность уменьшить количество модулей и занимаемую ими площадь. Потери мощности составляют 5% за 5 лет, 13% за 25 лет эксплуатации.

Площадь, занимая обычными батареями для домашней электростанции в 4410 ватт

Площадь, занимая батареями SunForte PM096B00 для домашней электростанции в 5940 ватт

Модули сертифицированы по IEC/EN 61215 , IEC/EN 61730 и UL 1703. Ячейки модуля ламинированы трехслойным покрытием пленки EVA, сам модуль защищен закаленным противоударным стеклом с антибликовым покрытием, толщиной 3.2 миллиметра. На тыльной стороне модуля расположена многофункциональная распределительная коробка с байпасными диодами и соединительными кабелями. Модуль заключен в профиль из анодированного алюминия, покрытого черной краской.

Основные характеристики модуля. Номинальная мощность 333 ватта. Эффективность 20.4% Количество ячеек 96 (8х12) штук Материал Монокристаллический кремний Тип ячеек Высокоэффективные с задними проводниками Размеры (ДхШхТ) 1559х1046х46 миллиметров Вес 18.6 Тип разъемов ТЕ, совместимые с МС-4 Класс защиты IP67

Стоимость модуля 34000 рублей.

Солнечная батарея NeON™ 2 BiFacial

Настоящей изюминкой Мюнхенской выставки INTERSOLAR EUROPE в 2016 году стала гелиевая панель NeON™ 2 BiFacial южнокорейской компании LG, которая каждый год представляет здесь свои новейшие разработки. И в последние годы эти новинки удостаиваются высших наград выставки. Не стал исключением и 2016 год. Двусторонний гелиевый модуль NeON™ 2 BiFacial заслуженно получил очередную награду.

Гелиевая батарея компании LG NeON™ 2 BiFacial

На сегодняшний день это самый мощный модуль с повышенной эффективностью. Его прозрачные фотоэлементы собирают не только свет, попадающий на его лицевую сторону, но и отраженный, попадающий на тыльную сторону ячеек.

Обычная ячейка LG и ячейка NeON™ 2 BiFacial

Лицевая сторона этой солнечной панели при оптимальных условиях генерирует электрический ток мощностью 310 ватт. Тыльная сторона панели генерирует дополнительно до 30% мощности лицевой панели. Подтвержденная максимальная мощность модуля составляет 400 ватт! Номинальная мощность не менее 375 ватт.

Кроме того, в модуле NeON™ 2 BiFacial используется новейшая технология LG, получившая название Сello Technology™. Эта технология дала возможность перенаправить токопроводящие пути. Пути генерируемого электричества к выходу модуля были распределены на 12 тонких проводников, что позволило снизить потери электроэнергии по сравнению с традиционными схемами.

Новые технологии компании LG

Основные характеристики модуля. Номинальная мощность 375 ватт. Максимальная мощность 400 ватт. Отклонение номинальной мощности 0/+3% Эффективность 19.6% Количество ячеек 60 (6х10) штук Материал Монокристаллический кремний Тип разъемов МС-4

Класс защиты IP67

Солнечная батарея NeON™ 2 BiFacial на выставке INTERSOLAR EUROPE 2016

С 31 мая по 2 июня 2017 года в Мюнхене будет проходить очередная выставка INTERSOLAR EUROPE. И нет сомнения в том, что на ней появятся очередные новинки и солнечные модули гораздо большей мощности. Наука ведь не стоит на месте.

Сознаемся мы себе или нет - сути это не меняет. Очень часто мы, приступая к реализации серьезных, тем более, менее серьезных своих планов, пренебрегаем проектами или расчетами. Это, как правило, не приводит к ожидаемым результатам, либо итоговые временные или материальные затраты оказываются совсем не ожидаемыми. Конечно же все необходимо считать. С этим вряд ли кто не согласится.

Что касается солнечных батарей, расчет их мощности просто необходим, поскольку малейшее отклонение в любую сторону приводит к изменению материальных затрат на порядок.

Есть еще одна бесспорная польза от процедуры расчета - формируется осознанное четкое понимание порядка эксплуатации будущей солнечной электростанции. Только человек, эксплуатировавший в своем доме автономную систему электроснабжения, до конца поймет, что это означает.

А понимание это сводится к одному: как сохранить каждый Ватт*час добытой энергии. В доме, электроснабжение которого осуществляется автономной системой, вы не увидите без надобности светящихся ламп освещения, как это часто бывает при традиционном электроснабжении.

В процессе пользования солнечной электростанции у вас в доме могут появиться такие приборы, как датчики движения, таймеры для автоматического управления освещением, фотореле для управления наружным освещением и т.д. Это войдет в привычную норму.

Вы не удивляйтесь, что я уделяю этому вопросу столько времени. Это действительно следует знать и понимать. Кто-то отнесет необходимость контроля каждого Ватт*час к недостаткам, я с ним не соглашусь.

Во-первых, давайте вспомним тех у кого других вариантов электроснабжения просто нет. Во-вторых, когда это здравая экономия стала, вдруг, недостатком! Согласитесь, было бы расточительно “вбухивать” заведомо бОльшие деньги в систему электроснабжения только для того, чтобы бесконтрольно транжирить энергию.

Начало расчета солнечной электростанции заключается в подсчете суммарной нагрузки потребления вашего дома. Примеров таких расчетов в разных интерпретациях много, и с описательной частью, и в режиме он-лайн. Ничего нового в данном случае выдумывать не стоит. Сначала ставится цель, потом ищутся пути её достижения. Также и здесь: сначала выясняются потребности, а потом рассчитываются технические и материальные возможности их удовлетворения.

Подсчет суммарной нагрузки потребления

Это первый этап расчета. Начинается он с того, что вы берете чистый лист бумаги и на нем составляете перечень всех приборов и устройств, которые, как вы предполагаете, будут использоваться в доме. Для начала делаете этот перечень не вникая в количественный и качественный его состав. На первом этапе расчета, если вам не приходилось его делать, трудно сделать заключение о том, целесообразно или нет оставлять тот или иной прибор в списке. Добавлять, вычеркивать или заменять будем после, когда порядок материальных затрат будет ясен.

А пока пишите:

    Энергосберегающая лампа

    Телевизор

    Электронасос

  • Холодильник

    Электрочайник

    Стиральная машина

    Микроволновая печь

Следующим шагом будет выяснение потребляемой мощности каждого из приборов. Это можно выяснить из паспортов на приборы или посмотреть бирки на самих приборах, где указаны их характеристики, в том числе и мощность потребления. В крайнем случае, если нет паспортов и бирок, можно выяснить необходимую информацию у менеджеров продаж в магазинах. Ну и, наконец, у вас же под рукой интернет, эти данные можно поискать через поисковые системы.

Я же проставляю ориентировочные числа, только лишь для того, чтобы показать порядок действий:

Если вы обратили внимание на первые две позиции, то, как видите, я разделил лампы с разной мощностью потребления. Нет необходимости в маленьких и редко посещаемых помещениях ставить лампы такие же, как и в жилых комнатах. А поскольку следующим шагом будет простановка общего времени работы этих приборов в течение суток, то и нет смысла эти лампы объединять в одной позиции.

Проставляем количество и общее время работы в сутки:

Следует пояснить результаты в последнем столбце. К примеру, если вы пылесосом пользуетесь не ежедневно, а один раз в неделю по 2 часа, то в месяц общее время составит 2 Х 4 = 8 часов, т.е. в сутки 8 часов: 30 = 0,3 часа. То же самое и с насосом. Если вам приходится накачивать воду, предположим, два раза в неделю и этот процесс длится 2 часа, то 2 Х 2 = 4 часа, 4 Х 4 = 16 часов, 16: 30 = 0,6 часов. Разумеется округляете в большую сторону.

Наименование Мощность, Вт Кол-во, шт. Время, час Вт*час
Энергосберегающая лампа 11 5 4,0 220,0
Энергосберегающая лампа 8 3 0,2 4,8
Телевизор 150 1 1,5 225,0
Электронасос 600 1 0,6 360,0
Утюг 1500 1 0,3 450,0
Ноутбук 350 1 1,0 350,0
Холодильник 250 1 12,0 3000,0
Электрочайник 1000 1 1,0 1000,0
Стиральная машина 1500 1 0,4 600,0
Микроволновая печь 1500 1 1,0 1500,0
Пылесос 700 1 0,3 210,0

Завершающая стадия подсчета суточного потребления - сложить все результаты последнего столбца. Результат получится: 7919,8 Вт*час в сутки.

Ну, что ж, давайте приступим к расчету солнечных батарей. У нас есть величина суточного потребления в размере 7919,8 Вт*час, от которой мы и будем “отталкиваться”.

Выбор величины напряжения постоянного тока системы

Выбор величины напряжения системы необходим, во-первых, для выбора приборов системы с точки зрения их согласованности по напряжению, инвертора, контроллера заряда батарей, во-вторых, от величины этого напряжения будут зависеть схемы соединения солнечных модулей и аккумуляторных батарей, ну и, в третьих, для дальнейших расчетов солнечных батарей.

Обычно для автономных систем электроснабжения частного жилого дома выбирается либо 12 В, либо 24 В. Если, конечно, система электроснабжения не слишком мощная и эта, её мощность, не вынуждает прибегать к напряжению 36 В или, допустим, 48 В, чтобы снизить токи в цепях, а значит, иметь возможность использовать провод меньшего сечения, т. е. более дешевый.

В нашем случае я предлагаю придерживаться следующей логики: если вы не планируете наращивать систему электроснабжения, а предполагаете ограничится 1000 Вт или 2000 Вт, то вполне достаточно остановиться на 12 В.

В случае же, если в ваших планах её наращивать, кроме того, эксплуатировать в зимний период, разумнее строить 24-х вольтовую систему. Это будет разумно потому, что на определенном этапе эксплуатации системы электроснабжения вы, скорее всего, придете к неизбежности дополнить её ветрогенератором. Это вполне логично и дает системе неоспоримые преимущества при эксплуатации круглый год. Мы об этом еще поговорим, когда коснемся темы ветрогенераторов.

Так вот, чтобы вам не пришлось менять однажды установленные приборы, лучше сразу выбрать вариант на 24 В, тогда и ветрогенератор с выходом в 24 В без особых затруднений впишется в вашу существующую систему.

И так. Предположим, что мы останавливаемся на варианте системы электроснабжения 24 В. Я этот выбор делаю в нашем примере, чтобы показать более наглядный пример расчета. Вы же поступайте так, как считаете нужным исходя из ваших данных, конечно с учетом вышесказанного.

Определение требуемого количества энергии в сутки

Для определения требуемого количества энергии в сутки нам необходимо вычисленное намизначение суточного потребления - 7919,8 Вт*час разделить на выбранное нами напряжение системы - 24 В. Результат этого деления составит 330 А*час.

Но мы не должны забывать, что инвертор сам потребляет часть энергии на собственные нужды. Значит мы должны предусмотреть запас энергии и для него. Исходя из этого полученный результат 330 А*час мы умножим на коэффициент 1,2 и получим 396 А*час.

Таким образом мы вычислили суточную величину энергии необходимой для обеспечения электроснабжения наших потребителей. И она составила 396 А*час.

Что не следует забывать при выборе солнечных модулей

Бесспорно электрические характеристики фотоэлектрических модулей играют первостепенную важность. Мощность, напряжение, ток. Но нельзя не обращать внимание и на такие параметры, как габариты, конструктивное исполнение, вес и т. д.

Давайте по порядку перечислим характеристики и параметры этих устройств и попутно отметим, как та или иная величина этих показателей может повлиять на дальнейшую эксплуатацию.

Напряжение

Начнем, конечно же, с напряжения. От выбора величины напряжения будет зависеть выбор контроллера заряда батарей, выбор напряжения аккумуляторов и, соответственно, схема их соединения.

В этом выборе догм нет, вы можете выбирать любое напряжение. Но! Самое главное, чтобы оно было стандартизированным. В противном случае вы столкнетесь со сложностью подбора такого оборудования, как контроллер заряда, инвертор, аккумуляторные батареи. Даже исходя из стандартизированной линейки напряжений, есть смысл посмотреть на какие напряжения доступны все необходимые приборы. Это, как правило, 12 Вольт, 24 Вольта, 48 Вольт.

Здесь необходимо сделать небольшую ремарку. Вы обращали внимание на то, что величина напряжения, а их для фотоэлектрического модуля приводят, как правило две (напряжение максимальной мощности и напряжение холостого хода), отличается от стандартного в большую сторону. Это необходимо для того, чтобы обеспечить полный заряд аккумуляторов. Этот запас предназначается для компенсации потерь в системе и учитывает работу модуля в реальных условиях, когда солнечная инсоляция не равна 1000 Вт/кв. м, температура не соответствует 25 градусам по Цельсию.

Мы остановились на 12, 24, 48 Вольтах. Другие величины выбирать смысла уже не имеет по той причине, что найти, при необходимости, устройство с иным напряжением будет сложнее. Зачем заведомо создавать себе трудности.

Учесть следует и такой момент, что некоторые модули рассчитаны на нестандартные напряжения и предназначены для работы с сетевыми инверторами. По этой причине нас они интересовать не могут.

Вообще главным принципом построения любой системы должно быть - по-возможности, избегать использование уникальных устройств. Узлы и приборы должны быть стандартными и максимально доступными. Только в этом случае вы обеспечите продолжительную работоспособность вашей системы.

Мощность и ток

Разумеется общую мощность вы набираете из тех модулей, напряжение которых соответствует выбранному ранее для системы. Напоминать, что они должны быть с одинаковыми характеристиками, думаю, не надо.

Путем соединения их либо параллельно, если напряжение каждого из них равно выбранному, либо последовательно, в случае, когда напряжение каждого из них меньше выбранного. Ну и последовательно-параллельно, чтобы обеспечить суммарную мощность при обеспечении выбранного напряжения системы. Кто пропустил статью , рекомендую прочитать.

Как только вы определились с количеством модулей и схемой их соединения, можете на основании результирующего тока сделать выбор контроллера заряда, ведь напряжение системы вами уже выбрано.

Габариты и вес

Помня такую истину, что каждое дополнительное электрическое соединение в системе повышает вероятность отказа (поломки), мы понимаем, что единый модуль соответствующий требуемым мощности и напряжению, был бы идеальным вариантом для нас. Ни тебе лишних соединений, ни тебе лишних проводов.

Но мы же понимаем, что это невозможно. Да и по большому счету не нужно. Не нужно хотя бы потому, что в этом случае мы лишаем нашу систему гибкости, да и ремонтопригодность тоже пострадает. Я не говорю уже про вес, который будет играть не последнюю роль при монтаже.

Гораздо сложнее будет нарастить систему, изменить напряжение системы, если такое вдруг понадобиться. Отремонтировать модуль, в конце концов. Опять же высокая парусность. Это тоже не следует снимать со счетов, ведь вы будете монтировать модули на открытой всем ветрам поверхности.

Тем не менее, не забывая про упомянутую истину, мы должны обратить внимание на габариты модулей с точки зрения монтажа (не каждый габарит позволит производить монтаж без подъемных механизмов), укладки на кровле (отсутствие затенения на протяжении всего светового дня).

С другой стороны слишком мельчить с габаритами - дороже обойдется.

Конструктивное исполнение

Конструктивное исполнение тоже играет немаловажную роль как в плане эксплуатационных характеристик так и с финансовой точки зрения. Бескаркасные модули, к примеру, будут стоить дешевле, но использовать именно их можно и нужно лишь в том случае, если у вас есть возможность выполнить монтаж таким образом, чтобы обеспечить их нормальную эксплуатацию без каркасов.

Либо вы имеете возможность самостоятельно изготовить каркас и это обойдется вам дешевле. Только следует учесть и вопрос герметизации модуля, поскольку при попадании воздуха и влаги происходит окисление контактов. Это значительно сокращает срок их службы.

Такие вещи, как стекла. Они бывают разные и от этого тоже зависит цена. Обычные стекла приводят к потерям до 15% из-за отражения. Стекла, выдерживающие ударную нагрузку, может быть, и будут лишними, а вот стекла с повышенной степенью прозрачности рассмотреть смысл имеет.

domvpavlino.ru


Смотрите также